Evolution Strategies: An Alternative Evolutionary Algorithm

In this paper, evolution strategies (ESs) — a class of evolutionary algorithms using normally distributed mutations, recombination, deterministic selection of the μ>1 best offspring individuals, and the principle of self-adaptation for the collective on-line learning of strategy parameters — are described by demonstrating their differences to genetic algorithms. By comparison of the algorithms, it is argued that the application of canonical genetic algorithms for continuous parameter optimization problems implies some difficulties caused by the encoding of continuous object variables by binary strings and the constant mutation rate used in genetic algorithms. Because they utilize a problem-adequate representation and a suitable self-adaptive step size control guaranteeing linear convergence for strictly convex problems, evolution strategies are argued to be more adequate for continuous problems.

[1]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[2]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .

[3]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[4]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[5]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[6]  Kenneth A. De Jong,et al.  Are Genetic Algorithms Function Optimizers? , 1992, PPSN.

[7]  Heinz Mühlenbein,et al.  Fuzzy Recombination for the Breeder Genetic Algorithm , 1995, ICGA.

[8]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[9]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[10]  Jacques Periaux,et al.  Genetic Algorithms in Engineering and Computer Science , 1996 .

[11]  Thomas C. Peachey,et al.  The Nature of Mutation in Genetic Algorithms , 1995, ICGA.

[12]  Andreas Ostermeier,et al.  An Evolution Strategy with Momentum Adaptation of the Random Number Distribution , 1992, PPSN.

[13]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[14]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[15]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[16]  J. David Schaffer,et al.  Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms , 1988, ML.

[17]  Thomas Bäck,et al.  An evolutionary heuristic for the maximum independent set problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Sys,et al.  How Gas Do Not Work Understanding Gas without Schemata and Building Blocks , 1995 .

[21]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[22]  Jarmo T. Alander,et al.  An Indexed Bibliography of Genetic Algorithms , 1995 .

[23]  Thomas Bäck,et al.  Evolution Strategies for Mixed-Integer Optimization of Optical Multilayer Systems , 1995, Evolutionary Programming.

[24]  Hans-Paul Schwefel Natural evolution and collective optimum-seeking , 1992 .

[25]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[26]  David B. Fogel,et al.  Evolving artificial intelligence , 1992 .

[27]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[28]  Hans-Paul Schwefel,et al.  Evolutionary Programming and Evolution Strategies: Similarities and Differences , 1993 .

[29]  Kenneth A. De Jong,et al.  Genetic Algorithms are NOT Function Optimizers , 1992, FOGA.

[30]  Hans-Paul Schwefel,et al.  Evolutionary Learning Optimum-Seeking on Parallel Computer Architectures , 1988 .

[31]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[32]  H. Schwefel,et al.  Applications of Evolutionary Algorithms , 1993 .

[33]  Thomas Bck Generalized convergence models for tournament|and (1; ?)|selection , 1995 .

[34]  Kennetb A. De Genetic Algorithms Are NOT Function Optimizers , 1992 .

[35]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[36]  Günter Rudolph,et al.  Contemporary Evolution Strategies , 1995, ECAL.

[37]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[38]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[39]  Günter Rudolph,et al.  Convergence of non-elitist strategies , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[40]  Achim Sydow Computational systems analysis: topics and trends , 1992 .

[41]  Thomas Bäck,et al.  An evolutionary approach to combinatorial optimization problems , 1994, CSC '94.

[42]  U. Witt Explaining process and change : approaches to evolutionary economics , 1992 .

[43]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[44]  Hal Berghel,et al.  Proceedings of the 1994 ACM Symposium on Applied Computing, SAC'94, Phoenix, AZ, USA, March 6-8, 1994 , 1994, SAC.

[45]  May C. Chen Toward a New Philosophy of Biology: Observations of an Evolutionist , 1990, The Yale Journal of Biology and Medicine.

[46]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .