Specializations in Symbolic Verification

We present the technique that allows splitting first-order logic formulae into parts which helps to use the special algorithms of satisfiability checking and predicate transformer, which are the specializations. We describe the mathematical description of the algorithm of the constructing specializations. We prove the correctness of satisfiability and predicate transformer functions. We consider forward and backward applicability of basic protocols during symbolic modeling and verification. We introduce the examples for each specialization. We provide the experiments with typical real examples.

[1]  Alexander A. Letichevsky,et al.  Insertion Modeling System , 2011, Ershov Memorial Conference.

[2]  Piergiorgio Bertoli,et al.  A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions , 2002, CADE.

[4]  Eugene Asarin,et al.  Some Progress in Satisfiability Checking for Difference Logic , 2004, FORMATS/FTRTFT.

[5]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[6]  Sanjit A. Seshia,et al.  Modeling and Verifying Systems Using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions , 2002, CAV.

[7]  Mark A. Hillebrand,et al.  Invariants, Modularity, and Rights , 2009, Ershov Memorial Conference.

[8]  Martin Wirsing,et al.  Extraction of Structured Programs from Specification Proofs , 1999, WADT.

[9]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[10]  Albert Oliveras,et al.  The Barcelogic SMT Solver , 2008, CAV.

[11]  Alexander A. Letichevsky Algebra of behavior transformations and its applications , 2005 .

[12]  Sergey Berezin,et al.  CVC Lite: A New Implementation of the Cooperating Validity Checker Category B , 2004, CAV.

[13]  Silvio Ranise,et al.  BDD-Driven First-Order Satisfiability Procedures (Extended Version) , 2002 .

[14]  Cesare Tinelli,et al.  The SMT-LIB Initiative and the Rise of SMT - (HVC 2010 Award Talk) , 2010, Haifa Verification Conference.

[15]  Thomas Weigert,et al.  Systems Specification by Basic Protocols , 2005 .

[16]  Aarti Gupta,et al.  SDSAT: Tight Integration of Small Domain Encoding and Lazy Approaches in a Separation Logic Solver , 2006, TACAS.

[17]  Shuvendu K. Lahiri,et al.  Zapato: Automatic Theorem Proving for Predicate Abstraction Refinement , 2004, CAV.

[18]  Marco Bozzano,et al.  An Incremental and Layered Procedure for the Satisfiability of Linear Arithmetic Logic , 2005, TACAS.

[19]  Alexander A. Letichevsky,et al.  Properties of a predicate transformer of the VRS system , 2010 .

[20]  David R. Gilbert,et al.  A Model for Interaction of Agents and Environments , 1999, WADT.

[21]  Ivo G. Rosenberg,et al.  Structural theory of automata, semigroups, and universal algebra , 2005 .

[22]  Thomas Weigert,et al.  Basic protocols, message sequence charts, and the verification of requirements specifications , 2005, Comput. Networks.

[23]  Andrei Voronkov,et al.  Automated Deduction—CADE-18 , 2002, Lecture Notes in Computer Science.

[24]  F. Hutter,et al.  ParamILS: an automatic algorithm configuration framework , 2009 .

[25]  Bruno Dutertre,et al.  A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.