Laminar (f)MRI: A short history and future prospects

[1]  Bruce Fischl,et al.  Microstructural parcellation of the human brain , 2018, NeuroImage.

[2]  Kawin Setsompop,et al.  Motion‐robust sub‐millimeter isotropic diffusion imaging through motion corrected generalized slice dithered enhanced resolution (MC‐gSlider) acquisition , 2018, Magnetic resonance in medicine.

[3]  Pierre-Louis Bazin,et al.  Laminar signal extraction over extended cortical areas by means of a spatial GLM , 2018, bioRxiv.

[4]  Essa Yacoub,et al.  Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field , 2018, NeuroImage.

[5]  Yogesh Rathi,et al.  High‐resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider‐SMS) , 2018, Magnetic resonance in medicine.

[6]  Natalia Petridou,et al.  Laminar imaging of positive and negative BOLD in human visual cortex at 7T , 2018, NeuroImage.

[7]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[8]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[9]  Jonathan R. Polimeni,et al.  Analysis strategies for high-resolution UHF-fMRI data , 2017, NeuroImage.

[10]  Oliver Speck,et al.  T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm , 2017, Scientific Data.

[11]  Rolf Gruetter,et al.  Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2 * and magnetic susceptibility , 2017, NeuroImage.

[12]  John H. Reynolds,et al.  Laminar Organization of Attentional Modulation in Macaque Visual Area V4 , 2017, Neuron.

[13]  Klaus Scheffler,et al.  Depth‐dependence of visual signals in the human superior colliculus at 9.4 T , 2017, Human brain mapping.

[14]  Jörg Felder,et al.  Automatic Segmentation of Human Cortical Layer-Complexes and Architectural Areas Using Ex vivo Diffusion MRI and Its Validation , 2016, Front. Neurosci..

[15]  Essa Yacoub,et al.  Variable flip angle 3D‐GRASE for high resolution fMRI at 7 tesla , 2016, Magnetic resonance in medicine.

[16]  Natalia Petridou,et al.  Lines of Baillarger in vivo and ex vivo: Myelin contrast across lamina at 7T MRI and histology , 2016, NeuroImage.

[17]  René Scheeringa,et al.  The relationship between oscillatory EEG activity and the laminar-specific BOLD signal , 2016, Proceedings of the National Academy of Sciences.

[18]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[19]  Daniel Gallichan,et al.  Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain , 2016, PloS one.

[20]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[21]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[22]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[23]  Mitsuhiro Fukuda,et al.  Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb , 2015, The Journal of Neuroscience.

[24]  Peter J. Koopmans,et al.  Reducing slab boundary artifacts in three‐dimensional multislab diffusion MRI using nonlinear inversion for slab profile encoding (NPEN) , 2015, Magnetic resonance in medicine.

[25]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[26]  R. Goebel,et al.  Histological validation of high-resolution DTI in human post mortem tissue , 2015, Front. Neuroanat..

[27]  Dominique Hasboun,et al.  Combined Laplacian-equivolumic model for studying cortical lamination with ultra high field MRI (7 T) , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[28]  David G. Norris,et al.  Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T , 2015, NeuroImage.

[29]  Timothy Q. Duong,et al.  Ultra-high spatial resolution basal and evoked cerebral blood flow MRI of the rat brain , 2015, Brain Research.

[30]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[31]  H. Heinze,et al.  Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding , 2014, Nature Communications.

[32]  Essa Yacoub,et al.  Functional mapping of the magnocellular and parvocellular subdivisions of human LGN , 2014, NeuroImage.

[33]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[34]  G. Douaud,et al.  Scan time reduction for readout‐segmented EPI using simultaneous multislice acceleration: Diffusion‐weighted imaging at 3 and 7 Tesla , 2014, Magnetic resonance in medicine.

[35]  Robert Turner,et al.  Slab‐selective, BOLD‐corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal‐to‐noise ratio , 2014, Magnetic resonance in medicine.

[36]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[37]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[38]  Seong-Gi Kim,et al.  Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb , 2014, NeuroImage.

[39]  A. Koretsky,et al.  Deciphering laminar-specific neural inputs with line-scanning fMRI , 2013, Nature Methods.

[40]  Pieter R. Roelfsema,et al.  Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation , 2013, Current Biology.

[41]  Cornelis H. Slump,et al.  Layer-specific diffusion weighted imaging in human primary visual cortex in vitro , 2013, Cortex.

[42]  David L. Thomas,et al.  Using High Angular Resolution Diffusion Imaging Data to Discriminate Cortical Regions , 2013, PloS one.

[43]  Allen W. Song,et al.  A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE) , 2013, NeuroImage.

[44]  Lawrence L. Wald,et al.  Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex , 2013, NeuroImage.

[45]  R. Goebel,et al.  Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE , 2013, PloS one.

[46]  R. Nieuwenhuys The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data , 2013, Brain Structure and Function.

[47]  Robert Turner,et al.  Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2 ⁎-imaging at ultra-high magnetic field strength , 2013, NeuroImage.

[48]  N. Ramsey,et al.  BOLD Specificity and Dynamics Evaluated in Humans at 7 T: Comparing Gradient-Echo and Spin-Echo Hemodynamic Responses , 2013, PloS one.

[49]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[50]  R. Turner,et al.  Layer-Specific Intracortical Connectivity Revealed with Diffusion MRI , 2012, Cerebral cortex.

[51]  Julien Cohen-Adad,et al.  Improving diffusion MRI using simultaneous multi-slice echo planar imaging , 2012, NeuroImage.

[52]  M. Carandini,et al.  Inhibition dominates sensory responses in awake cortex , 2012, Nature.

[53]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[54]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[55]  Peter R Luijten,et al.  Generalized multiple-layer appearance of the cerebral cortex with 3D FLAIR 7.0-T MR imaging. , 2012, Radiology.

[56]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[57]  S. Mori,et al.  Probing mouse brain microstructure using oscillating gradient diffusion MRI , 2012, Magnetic resonance in medicine.

[58]  Yen-Yu I Shih,et al.  Lamina-specific functional MRI of retinal and choroidal responses to visual stimuli. , 2011, Investigative ophthalmology & visual science.

[59]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[60]  N. Ramsey,et al.  Cortical Depth-Dependent Temporal Dynamics of the BOLD Response in the Human Brain , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[61]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[62]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[63]  A. Dale,et al.  Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal , 2010, Proceedings of the National Academy of Sciences.

[64]  Robert Turner,et al.  Diffusion imaging in humans at 7T using readout‐segmented EPI and GRAPPA , 2010, Magnetic resonance in medicine.

[65]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[66]  M. Fukunaga,et al.  Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast , 2010, Proceedings of the National Academy of Sciences.

[67]  Seong-Gi Kim,et al.  Cortical layer-dependent arterial blood volume changes: Improved spatial specificity relative to BOLD fMRI , 2010, NeuroImage.

[68]  Robin M Heidemann,et al.  High resolution diffusion‐weighted imaging using readout‐segmented echo‐planar imaging, parallel imaging and a two‐dimensional navigator‐based reacquisition , 2009, Magnetic resonance in medicine.

[69]  Y. Saalmann,et al.  Gain control in the visual thalamus during perception and cognition , 2009, Current Opinion in Neurobiology.

[70]  Tao Jin,et al.  Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation , 2008, NeuroImage.

[71]  Johannes Reichold,et al.  The microvascular system of the striate and extrastriate visual cortex of the macaque. , 2008, Cerebral cortex.

[72]  R. Turner,et al.  Optimised in vivo visualisation of cortical structures in the human brain at 3 T using IR-TSE. , 2008, Magnetic resonance imaging.

[73]  Tao Jin,et al.  Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T , 2008, NeuroImage.

[74]  N. Logothetis,et al.  The Effect of Labeling Parameters on Perfusion-Based fMRI in Nonhuman Primates , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[75]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[76]  Jeff H. Duyn,et al.  High-field MRI of brain cortical substructure based on signal phase , 2007, Proceedings of the National Academy of Sciences.

[77]  Seong-Gi Kim,et al.  Arterial versus Total Blood Volume Changes during Neural Activity-Induced Cerebral Blood Flow Change: Implication for BOLD fMRI , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[78]  N. Logothetis,et al.  Spatial Specificity of BOLD versus Cerebral Blood Volume fMRI for Mapping Cortical Organization , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[79]  D. Kleinfeld,et al.  Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal , 2007, The Journal of Neuroscience.

[80]  Anders M. Dale,et al.  Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation , 2007, NeuroImage.

[81]  Junjie Liu,et al.  Laminar profiles of functional activity in the human brain , 2007, NeuroImage.

[82]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[83]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[84]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[85]  Thomas T. Liu,et al.  An arteriolar compliance model of the cerebral blood flow response to neural stimulus , 2005, NeuroImage.

[86]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[87]  P. Matthews,et al.  Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. , 2005, Journal of vision.

[88]  J. Hyde,et al.  Spatial correlations of laminar BOLD and CBV responses to rat whisker stimulation with neuronal activity localized by Fos expression , 2004, Magnetic resonance in medicine.

[89]  G. Pelled,et al.  Different physiological MRI noise between cortical layers , 2004, Magnetic resonance in medicine.

[90]  Fuqiang Zhao,et al.  Cortical depth‐dependent gradient‐echo and spin‐echo BOLD fMRI at 9.4T , 2004, Magnetic resonance in medicine.

[91]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[92]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[93]  Afonso C. Silva,et al.  Laminar specificity of functional MRI onset times during somatosensory stimulation in rat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Grafman,et al.  Imaging cortical anatomy by high‐resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 , 2002, Magnetic resonance in medicine.

[95]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[96]  Seong-Gi Kim,et al.  Functional MRI of calcium‐dependent synaptic activity: Cross correlation with CBF and BOLD measurements , 2000, Magnetic resonance in medicine.

[97]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[98]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[99]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[100]  E Courchesne,et al.  In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. , 1992, Cerebral cortex.

[101]  J. Pekar,et al.  Echo-planar imaging of intravoxel incoherent motion. , 1990, Radiology.

[102]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[103]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[104]  K. Amunts,et al.  Myeloarchitecture and Maps of the Cerebral Cortex , 2015 .

[105]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy † , 2012 .

[106]  B. Fischl,et al.  Identifying common-source driven correlations in resting-state fMRI via laminar-specific analysis in the human visual cortex , 2009 .

[107]  Tao Jin,et al.  Spatial dependence of CBV-fMRI: a comparison between VASO and contrast agent based methods , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.