Seeded growth of Ti–46Al–8Nb polysynthetically twinned crystals with an ultra-high elongation

[1]  Rui Yang,et al.  Effect of yttria inclusion on room temperature tensile properties of investment cast TiAl , 2018 .

[2]  Yang ADVANCES AND CHALLENGES OF TiAl BASE ALLOYS , 2015 .

[3]  Yan-qing Su,et al.  Microstructure, microsegregation pattern and the formation of B2 phase in directionally solidified Ti–46Al–8Nb alloy , 2012 .

[4]  M. Oehring,et al.  Gamma Titanium Aluminide Alloys: Science and Technology , 2011 .

[5]  J. Lin,et al.  Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification , 2011 .

[6]  J. Lin,et al.  Effect of Nb on oxidation behavior of high Nb containing TiAl alloys , 2011 .

[7]  A. Bradshaw,et al.  Thermal characterization of an optical floating zone furnace: A direct link with controllable growth parameters , 2009 .

[8]  T. Velikanova,et al.  The Al–B–Nb–Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems , 2009 .

[9]  S. Koohpayeh,et al.  The optical floating zone technique: A review of experimental procedures with special reference to oxides , 2008 .

[10]  Xinhua Wu Review of alloy and process development of TiAl alloys , 2006 .

[11]  D. R. Johnson,et al.  Microstructural development during directional solidification of α-seeded TiAl alloys , 2006 .

[12]  D. Wee,et al.  Directional solidification and creep deformation of a Ti–46Al–1.5Mo–0.2C (at.%) alloy , 2002 .

[13]  Z. C. Liu,et al.  Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys , 2002 .

[14]  D. R. Johnson,et al.  A composition window in the TiAl–Mo–Si system suitable for lamellar structure control through seeding and directional solidification , 2002 .

[15]  D. R. Johnson,et al.  Microstructural control through seeding and directional solidification of TiAl alloys containing Mo and C , 2000 .

[16]  D. R. Johnson,et al.  Directional solidification of TiAl–Re–Si alloys with aligned γ/α2 lamellar microstructures , 1999 .

[17]  J. Lee,et al.  Composition and growth rate effects in directionally solidified TiAl alloys , 1997 .

[18]  K. Kishida,et al.  Effects of Al-concentration and lamellar spacing on the room-temperature strength and ductility of PST crystals of TiAl , 1997 .

[19]  D. R. Johnson,et al.  Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material , 1997 .

[20]  D. R. Johnson,et al.  Recent progress in our understanding of deformation and fracture of two-phase and single-phase TiAl alloys , 1996 .

[21]  D. R. Johnson,et al.  Directional solidification and microstructural control of the TiAlTi3Al lamellar microstructure in TiAlSi alloys , 1996 .

[22]  H. Inui,et al.  Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl , 1992 .

[23]  Dennis M. Dimiduk,et al.  Progress in the understanding of gamma titanium aluminides , 1991 .

[24]  J. Lin,et al.  Microstructural control of TiAl–Nb alloys by directional solidification , 2012 .

[25]  J. Kim,et al.  Effects of Si and C additions on the thermal stability of directionally solidified TiAl–Nb alloys , 2005 .

[26]  V. Raghavan Al-Si-Ti (aluminum-silicon-titanium) , 2005 .