Calcium and Activity-Dependent Synaptic Plasticity

[1]  B. Gustafsson,et al.  Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium and N-methyl-d-aspartate receptor channels in the hippocampal CA1 region , 1998, Neuroscience.

[2]  Richard F. Thompson,et al.  Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo , 1998, Cell.

[3]  R. Nicoll,et al.  Postsynaptic membrane fusion and long-term potentiation. , 1998, Science.

[4]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[5]  E. Ziff Enlightening the Postsynaptic Density , 1997, Neuron.

[6]  R. Leapman,et al.  Activity-Dependent Calcium Sequestration in Dendrites of Hippocampal Neurons in Brain Slices , 1997, The Journal of Neuroscience.

[7]  R. Anwyl,et al.  LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro. , 1997, Journal of neurophysiology.

[8]  R. Anwyl,et al.  Conditions for the induction of long-term potentiation and long-term depression by conjunctive pairing in the dentate gyrus in vitro. , 1997, Journal of neurophysiology.

[9]  H. Miyakawa,et al.  Properties of calcium spikes revealed during GABAA receptor antagonism in hippocampal CA1 neurons from guinea pigs. , 1997, Journal of neurophysiology.

[10]  S. Martin,et al.  (R,S)-α-methyl-4-carboxyphenylglycine (MCPG) fails to block long-term potentiation under urethane anaesthesia in vivo , 1997, Neuropharmacology.

[11]  S. Schiffmann,et al.  Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. F. Stanley The calcium channel and the organization of the presynaptic transmitter release face , 1997, Trends in Neurosciences.

[13]  Eric R. Kandel,et al.  Recruitment of New Sites of Synaptic Transmission During the cAMP-Dependent Late Phase of LTP at CA3–CA1 Synapses in the Hippocampus , 1997, Neuron.

[14]  E. Neher,et al.  Alteration of Ca2+ Dependence of Neurotransmitter Release by Disruption of Ca2+ Channel/Syntaxin Interaction , 1997, The Journal of Neuroscience.

[15]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[16]  Robert C. Malenka,et al.  Rab3A is essential for mossy fibre long-term potentiation in the hippocampus , 1997, Nature.

[17]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[18]  A Konnerth,et al.  Release and sequestration of calcium by ryanodine‐sensitive stores in rat hippocampal neurones , 1997, The Journal of physiology.

[19]  Arthur Konnerth,et al.  Dendritic signal integration , 1997, Current Opinion in Neurobiology.

[20]  R. Nicoll,et al.  Two Distinct Forms of Long-Term Depression Coexist in CA1 Hippocampal Pyramidal Cells , 1997, Neuron.

[21]  Karl Deisseroth,et al.  Ca2+-dependent regulation in neuronal gene expression , 1997, Current Opinion in Neurobiology.

[22]  W. Catterall,et al.  Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Thomas J. Carew,et al.  Multiple overlapping processes underlying short-term synaptic enhancement , 1997, Trends in Neurosciences.

[24]  A Konnerth,et al.  Local dendritic Ca2+ signaling induces cerebellar long-term depression. , 1997, Learning & memory.

[25]  N. Donegan,et al.  A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. , 1997, Learning & memory.

[26]  Min Zhuo,et al.  Dendritic Ca2+ Channels Characterized by Recordings from Isolated Hippocampal Dendritic Segments , 1997, Neuron.

[27]  B. Gustafsson,et al.  NMDA receptor dependence of the input specific NMDA receptor-independent LTP in the hippocampal CA1 region , 1997, Brain Research.

[28]  H. Lester,et al.  Functional Expression of the Heteromeric “Olfactory” Cyclic Nucleotide-Gated Channel in the Hippocampus: A Potential Effector of Synaptic Plasticity in Brain Neurons , 1997, The Journal of Neuroscience.

[29]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[30]  Micha E. Spira,et al.  Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons , 1997, Neuron.

[31]  Susumu Tonegawa,et al.  Synaptic plasticity, place cells and spatial memory: study with second generation knockouts , 1997, Trends in Neurosciences.

[32]  D. Johnston,et al.  Contribution of voltage-gated Ca2+ channels to homosynaptic long-term depression in the CA1 region in vitro. , 1997, Journal of neurophysiology.

[33]  R. Zucker,et al.  Mitochondrial Involvement in Post-Tetanic Potentiation of Synaptic Transmission , 1997, Neuron.

[34]  M. Segal,et al.  Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  O. Garaschuk,et al.  Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[37]  Yue Wang,et al.  Induction of LTD in the dentate gyrus in vitro is NMDA receptor independent, but dependent on Ca2+ influx via low-voltage-activated Ca2+ channels and release of Ca2+ from intracellular stores. , 1997, Journal of neurophysiology.

[38]  D. Ginty,et al.  Calcium Regulation of Gene Expression: Isn't That Spatial? , 1997, Neuron.

[39]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[40]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[41]  K. Deisseroth,et al.  CREB Phosphorylation and Dephosphorylation: A Ca2+- and Stimulus Duration–Dependent Switch for Hippocampal Gene Expression , 1996, Cell.

[42]  R. Zucker,et al.  Exocytosis: A Molecular and Physiological Perspective , 1996, Neuron.

[43]  W. Regehr,et al.  Timing of neurotransmission at fast synapses in the mammalian brain , 1996, Nature.

[44]  Allen I. Selverston,et al.  Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuit , 1996, Nature.

[45]  Paul Antoine Salin,et al.  Distinct short-term plasticity at two excitatory synapses in the hippocampus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Teyler,et al.  Two forms of long-term potentiation in area CA1 activate different signal transduction cascades. , 1996, Journal of neurophysiology.

[47]  J. Roder,et al.  Enhanced LTP in Mice Deficient in the AMPA Receptor GluR2 , 1996, Neuron.

[48]  Paul W. Frankland,et al.  Impaired learning in mice with abnormal short-lived plasticity , 1996, Current Biology.

[49]  H. Reuter,et al.  A Role of Intracellular Na+ in the Regulation of Synaptic Transmission and Turnover of the Vesicular Pool in Cultured Hippocampal Cells , 1996, Neuron.

[50]  D. Johnston,et al.  Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[51]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[52]  G. Collingridge,et al.  Ca2+stores and hippocampal synaptic plasticity , 1996 .

[53]  K. Krnjević,et al.  Calcium dependence of LTP induced by 2-deoxyglucose in CA1 neurons. , 1996, Journal of neurophysiology.

[54]  P. Stanton,et al.  Induction of Hippocampal Long-Term Depression Requires Release of Ca2+ from Separate Presynaptic and Postsynaptic Intracellular Stores , 1996, The Journal of Neuroscience.

[55]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[56]  M. Charlton,et al.  Accumulation and extrusion of permeant Ca2+ chelators in attenuation of synaptic transmission at hippocampal CA1 neurons , 1996, Neuroscience.

[57]  D. Johnston,et al.  The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. , 1996, Learning & memory.

[58]  Mark J. Thomas,et al.  Activity-Dependent β-Adrenergic Modulation of Low Frequency Stimulation Induced LTP in the Hippocampal CA1 Region , 1996, Neuron.

[59]  T. Manabe,et al.  Presynaptic Long-Term Depression at the Hippocampal Mossy Fiber--CA3 Synapse , 1996, Science.

[60]  T. Robbins,et al.  Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Connor,et al.  Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. , 1996, Journal of neurophysiology.

[62]  A. Macdermott,et al.  Synaptic strengthening through activation of Ca2+ -permeable AMPA receptors , 1996, Nature.

[63]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[64]  H. Reuter Diversity and function of presynaptic calcium channels in the brain , 1996, Current Opinion in Neurobiology.

[65]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[66]  E. Villacres,et al.  Induction of CRE-Mediated Gene Expression by Stimuli That Generate Long-Lasting LTP in Area CA1 of the Hippocampus , 1996, Neuron.

[67]  Massimo Scanziani,et al.  Role of intercellular interactions in heterosynaptic long-term depression , 1996, Nature.

[68]  M. Bear,et al.  Metaplasticity: the plasticity of synaptic plasticity , 1996, Trends in Neurosciences.

[69]  Paul Antoine Salin,et al.  Cyclic AMP Mediates a Presynaptic Form of LTP at Cerebellar Parallel Fiber Synapses , 1996, Neuron.

[70]  R. Nicoll,et al.  Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus , 1996, Neuron.

[71]  O. Garaschuk,et al.  Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. , 1996, The Journal of physiology.

[72]  Robert S. Zucker,et al.  Postsynaptic Levels of [Ca2+]i Needed to Trigger LTD and LTP , 1996, Neuron.

[73]  W. Catterall,et al.  Calcium-dependent interaction of N-type calcium channels with the synaptic core complex , 1996, Nature.

[74]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[75]  Y. Ben-Ari,et al.  Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. , 1995, Journal of neurophysiology.

[76]  J. Lisman,et al.  Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro , 1995, Neuron.

[77]  H. Reuter,et al.  Localization and functional significance of the Na+/Ca2+exchanger in presynaptic boutons of hippocampal cells in culture , 1995, Neuron.

[78]  T. Südhof,et al.  Distinct Ca2+ and Sr2+ Binding Properties of Synaptotagmins , 1995, The Journal of Biological Chemistry.

[79]  Mark J. Thomas,et al.  The molecular switch hypothesis fails to explain the inconsistent effects of the metabotropic glutamate receptor antagonist MCPG on long-term potentiation , 1995, Brain Research.

[80]  S. Wang,et al.  Confocal imaging and local photolysis of caged compounds: Dual probes of synaptic function , 1995, Neuron.

[81]  D. Johnston,et al.  Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. , 1995, Journal of neurophysiology.

[82]  J L van Hemmen,et al.  Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines. , 1995, Journal of neurophysiology.

[83]  W. Abraham,et al.  Evidence for common expression mechanisms underlying heterosynaptic and associative long-term depression in the dentate gyrus. , 1995, Journal of neurophysiology.

[84]  M. Bear,et al.  Reexamination of the effects of MCPG on hippocampal LTP, LTD, and depotentiation. , 1995, Journal of neurophysiology.

[85]  S. Mironov Plasmalemmal and intracellular Ca2+ pumps as main determinants of slow Ca2+ buffering in rat hippocampal neurones , 1995, Neuropharmacology.

[86]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[87]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[88]  A Konnerth,et al.  Ryanodine receptor‐mediated intracellular calcium release in rat cerebellar Purkinje neurones. , 1995, The Journal of physiology.

[89]  R. Anwyl,et al.  Metabotropic glutamate receptor-induced homosynaptic long-term depression and depotentiation in the dentate gyrus of the rat hippocampus in vitro , 1995, Neuropharmacology.

[90]  B. Alger,et al.  Retrograde signaling at GABAA-receptor synapses in the mammalian CNS , 1995, Trends in Neurosciences.

[91]  Robert C. Malenka,et al.  Independent mechanisms for long-term depression of AMPA and NMDA responses , 1995, Neuron.

[92]  B. Gustafsson,et al.  Long-term potentiation in the hippocampal CA1 region in the presence ofN-methyl-d-aspartate receptor antagonists , 1995, Neuroscience.

[93]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[94]  M. Bear,et al.  Mechanism for a sliding synaptic modification threshold , 1995, Neuron.

[95]  M Segal,et al.  Fast imaging of [Ca]i reveals presence of voltage-gated calcium channels in dendritic spines of cultured hippocampal neurons. , 1995, Journal of neurophysiology.

[96]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[97]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[98]  Jian Wang,et al.  CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP , 1995, Cell.

[99]  K. Reymann,et al.  Thapsigargin blocks long-term potentiation induced by weak, but not strong tetanisation in rat hippocampal CA1 neurons , 1995, Neuroscience Letters.

[100]  T. Südhof,et al.  Essential functions of synapsins I and II in synaptic vesicle regulation , 1995, Nature.

[101]  J. Connor,et al.  Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice , 1995, Neuron.

[102]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[103]  D. Johnston,et al.  Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. , 1995, Journal of neurophysiology.

[104]  B. Gustafsson,et al.  On the linkage between AMPA and NMDA receptor-mediated EPSPs in homosynaptic long-term depression in the hippocampal CA1 region of young rats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[106]  W G Regehr,et al.  Calcium transients in cerebellar granule cell presynaptic terminals. , 1995, Biophysical journal.

[107]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[108]  M E Greenberg,et al.  Calcium signaling in neurons: molecular mechanisms and cellular consequences. , 1995, Science.

[109]  M. Barish,et al.  Inositol 1,4,5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine- and caffeine-induced calcium release in cultured mouse hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  W. Levy,et al.  Long-term potentiation and evidence for novel synaptic association in CA1 stratum oriens of rat hippocampus. , 1995, Learning & memory.

[111]  T. Bliss,et al.  Memories of NMDA receptors and LTP , 1995, Trends in Neurosciences.

[112]  J. Luebke,et al.  Exocytotic Ca2+ channels in mammalian central neurons , 1995, Trends in Neurosciences.

[113]  T J Teyler,et al.  Different mechanisms may be required for maintenance, of NMDA receptor‐dependent and independent forms of long‐term potentiation , 1995, Synapse.

[114]  M. Sakurai,et al.  Post-synaptic depolarization in induction of long-term potentiation in the CA1 hippocampus. , 1995, Neuroreport.

[115]  A. Konnerth,et al.  Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons , 1995, Nature.

[116]  K. Mikoshiba,et al.  Voltage-gated Ca2+ channel blockers, ω-AgalVA and Ni2+, suppress the induction of θ-burst induced long-term potentiation in guinea-pig hippocampal CA1 neurons , 1995, Neuroscience Letters.

[117]  J. Lisman The CaM kinase II hypothesis for the storage of synaptic memory , 1994, Trends in Neurosciences.

[118]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[119]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[120]  I. Spigelman,et al.  N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  R. Zucker,et al.  Residual Ca2 + and short-term synaptic plasticity , 1994, Nature.

[122]  Alcino J. Silva,et al.  Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein , 1994, Cell.

[123]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[124]  D. Kleinfeld,et al.  Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy , 1994, Journal of Neuroscience Methods.

[125]  D W Tank,et al.  A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[126]  J. Connor,et al.  Dendritic Ca2+ accumulations and metabotropic glutamate receptor activation associated with an n‐methyl‐d‐aspartate receptor‐independent long‐term potentiation in hippocampal CA1 neurons , 1994, Hippocampus.

[127]  W. Kloot Facilitation of transmission at the frog neuromuscular junction at O degrees C is not maximal at time zero , 1994 .

[128]  K. I. Blum,et al.  Visualizing hippocampal synaptic function by optical detection of Ca2+ entry through the N-methyl-D-aspartate channel. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[129]  R. Zucker,et al.  Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators. , 1994, Journal of neurophysiology.

[130]  B. Gustafsson,et al.  TEA elicits two distinct potentiations of synaptic transmission in the CA1 region of the hippocampal slice , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  B. Gustafsson,et al.  Onset and stabilization of NMDA receptor-dependent hippocampal long-term potentiation , 1994, Neuroscience Research.

[132]  C. McBain,et al.  N-methyl-D-aspartic acid receptor structure and function. , 1994, Physiological reviews.

[133]  T. H. Brown,et al.  Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. , 1994, Journal of neurophysiology.

[134]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[135]  R. Nicoll,et al.  MCPG Antagonizes Metabotropic Glutamate Receptors but not Long‐term Potentiation in the Hippocampus , 1994, The European journal of neuroscience.

[136]  David W. Tank,et al.  Dendritic calcium dynamics , 1994, Current Opinion in Neurobiology.

[137]  R. P. McIntyre,et al.  Empirical Relationships between Need for Cognition and Cognitive Style: Implications for Consumer Psychology , 1994 .

[138]  H. Markram,et al.  Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[139]  S. Siegelbaum,et al.  Postsynaptic induction and presynaptic expression of hippocampal long-term depression. , 1994, Science.

[140]  G. Collingridge,et al.  A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation , 1994, Nature.

[141]  A. Marty,et al.  Calcium-induced calcium release in cerebellar purkinje cells , 1994, Neuron.

[142]  T. H. Brown,et al.  Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. , 1994, Journal of neurobiology.

[143]  D W Tank,et al.  The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[144]  Marc G. Weisskopf,et al.  The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation , 1994, Neuron.

[145]  T. Teyler,et al.  Activation of NMDA receptors in hippocampal area CA1 by low and high frequency orthodromic stimulation and their contribution to induction of long‐term potentiation , 1994, Synapse.

[146]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[147]  Thomas C. Südhof,et al.  Short-term synaptic plasticity is altered in mice lacking synapsin I , 1993, Cell.

[148]  W. Singer,et al.  Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation , 1993, Trends in Neurosciences.

[149]  G. Collingridge,et al.  Metabotropic glutamate receptors and calcium signalling in dendrites of hippocampal CA1 neurones , 1993, Neuropharmacology.

[150]  R. Nicoll,et al.  The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation , 1993, Neuron.

[151]  G. Collingridge,et al.  Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. , 1993, The Journal of physiology.

[152]  P. Seeburg The TINS/TiPS Lecture the molecular biology of mammalian glutamate receptor channels , 1993, Trends in Neurosciences.

[153]  S. Snyder,et al.  Differential immunohistochemical localization of inositol 1,4,5- trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[154]  M E Greenberg,et al.  Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. , 1993, Science.

[155]  Yy Huang,et al.  Examination of TEA-induced synaptic enhancement in area CA1 of the hippocampus: the role of voltage-dependent Ca2+ channels in the induction of LTP , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[156]  H. Kasai Cytosolic Ca2+ gradients, Ca2+ binding proteins and synaptic plasticity , 1993, Neuroscience Research.

[157]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[158]  W. N. Ross,et al.  Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels , 1992, Neuron.

[159]  Dimitri M. Kullmann,et al.  Ca2+ Entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus , 1992, Neuron.

[160]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[161]  Y. Ben-Ari,et al.  Protein kinase C modulation of NMDA currents: an important link for LTP induction , 1992, Trends in Neurosciences.

[162]  B. Gustafsson,et al.  Postsynaptic, but not presynaptic, activity controls the early time course of long-term potentiation in the dentate gyrus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[163]  R. Malenka,et al.  Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation , 1992, Neuron.

[164]  T. Teyler,et al.  N-methyl-d-aspartate receptor-independent long-term potentiation in area CA1 of rat hippocampus: Input-specific induction and preclusion in a non-tetanized pathway , 1992, Neuroscience.

[165]  R. Dingledine,et al.  Dual-component miniature excitatory synaptic currents in rat hippocampal CA3 pyramidal neurons. , 1992, Journal of neurophysiology.

[166]  G. Collingridge,et al.  Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices , 1992, Neuroscience Letters.

[167]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[168]  O. Steward,et al.  Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons , 1992, Trends in Neurosciences.

[169]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[170]  A. Konnerth,et al.  Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells , 1992, Nature.

[171]  M Segal,et al.  Confocal microscopic imaging of [Ca2+]i in cultured rat hippocampal neurons following exposure to N‐methyl‐D‐aspartate. , 1992, The Journal of physiology.

[172]  R. Malenka,et al.  The influence of prior synaptic activity on the induction of long-term potentiation. , 1992, Science.

[173]  O. Steward,et al.  Selective localization of polyribosomes beneath developing synapses: A quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyrus , 1991, The Journal of comparative neurology.

[174]  K. Zipser,et al.  Role of residual calcium in synaptic depression and posttetanic potentiation: Fast and slow calcium signaling in nerve terminals , 1991, Neuron.

[175]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[176]  K. A. Jones,et al.  Both NMDA and non-NMDA subtypes of glutamate receptors are concentrated at synapses on cerebral cortical neurons in culture , 1991, Neuron.

[177]  David W. Tank,et al.  The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium , 1991, Neuron.

[178]  James Watras,et al.  Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum , 1991, Nature.

[179]  M. Charlton,et al.  Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[180]  Robert C. Malenka,et al.  Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus , 1991, Neuron.

[181]  Y. Ben-Ari,et al.  Novel form of long-term potentiation produced by a K+channel blocker in the hippocampus , 1991, Nature.

[182]  E. M. Adler,et al.  Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses , 1990, Neuron.

[183]  Lawrence M. Grover,et al.  Two components of long-term potentiation induced by different patterns of afferent activation , 1990, Nature.

[184]  William A. Catterall,et al.  Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons , 1990, Nature.

[185]  T. H. Brown,et al.  Biophysical model of a Hebbian synapse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[186]  T. Teyler,et al.  Differential effects of NMDA receptor antagonist APV on tetanic stimulation induced and calcium induced potentiation , 1990, Neuroscience Letters.

[187]  W. Levy,et al.  Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. , 1990, Journal of neurophysiology.

[188]  Lawrence M. Grover,et al.  Effects of extracellular potassium concentration and postsynaptic membrane potential on calcium-induced potentiation in area CA1 of rat hippocampus , 1990, Brain Research.

[189]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[190]  C. Stevens,et al.  NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus , 1989, Nature.

[191]  H. Wigström,et al.  Onset Characteristics of Long‐Term Potentiation in the Guinea‐Pig Hippocampal CA1 Region in Vitro , 1989, The European journal of neuroscience.

[192]  I. Módy,et al.  Dantrolene-Na (Dantrium) blocks induction of long-term potentiation in hippocampal slices , 1989, Neuroscience Letters.

[193]  R. Tsien,et al.  Multiple types of neuronal calcium channels and their selective modulation , 1988, Trends in Neurosciences.

[194]  M. Blaustein Calcium transport and buffering in neurons , 1988, Trends in Neurosciences.

[195]  H. Wigström,et al.  Physiological mechanisms underlying long-term potentiation , 1988, Trends in Neurosciences.

[196]  R S Zucker,et al.  Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. , 1988, Science.

[197]  U. Frey,et al.  Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro , 1988, Brain Research.

[198]  R. Anwyl,et al.  Caffeine inhibits post-tetanic potentiation but does not alter long-term potentiation in the rat hippocampal slice , 1987, Brain Research.

[199]  H. Wigström,et al.  Facilitated induction of hippocampal long-term potentiation in slices perfused with low concentrations of magnesium , 1987, Neuroscience.

[200]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[201]  J. Taube,et al.  Ineffectiveness of organic calcium channel blockers in antagonizing long-term potentiation , 1986, Brain Research.

[202]  H. Wigström,et al.  On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity. , 1985, Acta physiologica Scandinavica.

[203]  J. Sarvey,et al.  Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[204]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[205]  J. A. Markham,et al.  Calcium in the spine apparatus of dendritic spines in the dentate molecular layer , 1983, Brain Research.

[206]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[207]  W. Levy,et al.  Synapses as associative memory elements in the hippocampal formation , 1979, Brain Research.

[208]  Gary Lynch,et al.  The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation , 1979, Brain Research.

[209]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[210]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[211]  S. Redman,et al.  Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity. , 1998, Journal of neurophysiology.

[212]  W. Abraham,et al.  Induction and reversal of long‐term potentiation by repeated high‐frequency stimulation in rat hippocampal slices , 1997, Hippocampus.

[213]  K. Deisseroth,et al.  Signaling from Synapse to Nucleus: Postsynaptic CREB Phosphorylation during Multiple Forms of Hippocampal Synaptic Plasticity , 1996, Neuron.

[214]  B. Sakmann,et al.  Patch-Pipette Recordings from the Soma, Dendrites, and Axon of Neurons in Brain Slices , 1995 .

[215]  M. Mauk,et al.  Distinct LTP induction mechanisms: contribution of NMDA receptors and voltage-dependent calcium channels. , 1995, Journal of neurophysiology.

[216]  R. Tsien,et al.  Neuronal calcium channels encoded by the alpha 1A subunit and their contribution to excitatory synaptic transmission in the CNS. , 1995, Progress in brain research.

[217]  E. Carafoli Intracellular calcium homeostasis. , 1987, Annual review of biochemistry.

[218]  G. Lynch,et al.  A critical level of protein synthesis is required for long‐term potentiation , 1987, Synapse.

[219]  H. Wigström,et al.  Postsynaptic control of hippocampal long-term potentiation. , 1986, Journal de physiologie.

[220]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.