Simultaneous state-time approximation of the chemical master equation using tensor product formats
暂无分享,去创建一个
[1] Östlund,et al. Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.
[2] White,et al. Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.
[3] M. Fannes,et al. Ground states of VBS models on cayley trees , 1992 .
[4] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[5] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[6] Vladimir A. Kazeev,et al. Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..
[7] S. Dolgov. TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.
[8] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[9] Ivan V. Oseledets,et al. Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[10] M. Khammash,et al. The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.
[11] S. V. DOLGOV,et al. Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation , 2012, SIAM J. Sci. Comput..
[12] Ivan P. Gavrilyuk,et al. Quantized-TT-Cayley Transform for Computing the Dynamics and the Spectrum of High-Dimensional Hamiltonians , 2011, Comput. Methods Appl. Math..
[13] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..
[14] Daniel Kressner,et al. Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..
[15] Mauricio Barahona,et al. Perfect sampling of the master equation for gene regulatory networks. , 2006, Biophysical journal.
[16] Hans-Dieter Meyer,et al. Multidimensional quantum dynamics : MCTDH theory and applications , 2009 .
[17] W. Ebeling. Stochastic Processes in Physics and Chemistry , 1995 .
[18] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[19] T. Schulte-Herbrüggen,et al. Computations in quantum tensor networks , 2012, 1212.5005.
[20] W. Huisinga,et al. A Dynamical Low-Rank Approach to the Chemical Master Equation , 2008, Bulletin of mathematical biology.
[21] Lei Tang,et al. Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations , 2011, SIAM J. Sci. Comput..
[22] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[23] Elías Cueto,et al. Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions , 2012, International journal for numerical methods in biomedical engineering.
[24] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[25] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[26] C. Lubich,et al. A projector-splitting integrator for dynamical low-rank approximation , 2013, BIT Numerical Mathematics.
[27] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[28] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[29] Vladimir A. Kazeev,et al. Tensor Approximation of Stationary Distributions of Chemical Reaction Networks , 2015, SIAM J. Matrix Anal. Appl..
[30] Andreas Hellander,et al. Hybrid method for the chemical master equation , 2007, J. Comput. Phys..
[31] M. Ptashne. A genetic switch : phage λ and higher organisms , 1992 .
[32] Virginie Ehrlacher,et al. Convergence of a greedy algorithm for high-dimensional convex nonlinear problems , 2010, 1004.0095.
[33] A. Arkin,et al. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.
[34] Reinhold Schneider,et al. Efficient time-stepping scheme for dynamics on TT-manifolds , 2012 .
[35] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[36] Wolfgang Dahmen,et al. Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..
[37] Hermann G. Matthies,et al. Efficient Analysis of High Dimensional Data in Tensor Formats , 2012 .
[38] C. J. Burden,et al. A solver for the stochastic master equation applied to gene regulatory networks , 2007 .
[39] Dan ie l T. Gil lespie. A rigorous derivation of the chemical master equation , 1992 .
[40] M. Kramer,et al. Sensitivity Analysis in Chemical Kinetics , 1983 .
[41] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[42] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[43] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[44] Markus Weimar. Breaking the curse of dimensionality , 2015 .
[45] D. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .
[46] D. Gillespie. The Chemical Langevin and Fokker−Planck Equations for the Reversible Isomerization Reaction† , 2002 .
[47] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[48] Mark Coppejans,et al. Breaking the Curse of Dimensionality , 2000 .
[49] Sean R Eddy,et al. What is dynamic programming? , 2004, Nature Biotechnology.
[50] Kwang-Hyun Cho,et al. Modelling the dynamics of signalling pathways. , 2008, Essays in biochemistry.
[51] Endre Süli,et al. Greedy Approximation of High-Dimensional Ornstein–Uhlenbeck Operators , 2011, Found. Comput. Math..
[52] J. Collins,et al. Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.
[53] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[54] Tobias Jahnke,et al. Error Bound for Piecewise Deterministic Processes Modeling Stochastic Reaction Systems , 2012, Multiscale Model. Simul..
[55] R. Steuer. Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations. , 2004, Journal of theoretical biology.
[56] Boris N. Khoromskij,et al. Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..
[57] Othmar Koch,et al. Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..
[58] Ivan V. Oseledets,et al. Fast adaptive interpolation of multi-dimensional arrays in tensor train format , 2011, The 2011 International Workshop on Multidimensional (nD) Systems.
[59] B. Khoromskij. Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .
[60] T. Schulte-Herbrüggen,et al. Exploiting matrix symmetries and physical symmetries in matrix product states and tensor trains , 2013, 1301.0746.
[61] Christine Tobler,et al. Multilevel preconditioning and low‐rank tensor iteration for space–time simultaneous discretizations of parabolic PDEs , 2015, Numer. Linear Algebra Appl..
[62] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[63] N. Kampen,et al. Stochastic processes in physics and chemistry , 1981 .
[64] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[65] Ivan Oseledets,et al. Fast solution of multi-dimensional parabolic problems in the tensor train/quantized tensor train–format with initial application to the Fokker-Planck equation , 2012 .
[66] B. Khoromskij,et al. Tensor-product approach to global time-space-parametric discretization of chemical master equation , 2012 .
[67] Boris N. Khoromskij,et al. Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..
[68] Y. Maday,et al. Results and Questions on a Nonlinear Approximation Approach for Solving High-dimensional Partial Differential Equations , 2008, 0811.0474.
[69] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[70] J. Goutsias. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. , 2005, The Journal of chemical physics.
[71] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[72] Boris N. Khoromskij,et al. Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..
[73] Vladimir A. Kazeev,et al. Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..
[74] Markus Hegland,et al. On the numerical solution of the chemical master equation with sums of rank one tensors , 2011 .
[75] Daniel Kressner,et al. Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..
[76] O. S. Lebedeva. Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case , 2010 .
[77] D. Gillespie. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .
[78] Boris N. Khoromskij,et al. Superfast Fourier Transform Using QTT Approximation , 2012 .
[79] G. Worth,et al. Multidimensional Quantum Dynamics , 2009 .
[80] Boris N. Khoromskij,et al. Two-Level QTT-Tucker Format for Optimized Tensor Calculus , 2013, SIAM J. Matrix Anal. Appl..