Simultaneous state-time approximation of the chemical master equation using tensor product formats

This is an essentially improved version of the preprint [12]. This manuscript contains all the same numerical experiments, but some inaccuracies in the description of the modeling equations are corrected. Besides, more detailed introduction to the tensor methods is presented. We study the application of the novel tensor formats (TT, QTT, QTT-Tucker) to the solution of d-dimensional chemical master equations, applied mostly to gene regulating networks (signaling cascades, toggle switches, phage- ). For some important cases, e.g. signaling cascade models, we prove good separability properties of the system operator. The Quantized tensor representations (QTT, QTT-Tucker) are employed in both state space and time, and the global state-time (d +1)-dimensional system is solved in the structured form by using the ALS-type iteration. This approach leads to the logarithmic dependence of the computational complexity on the system size. When possible, we compare our approach with the direct CME solution and some previously known approximate schemes, and observe a good potential of the newer tensor methods in simulation of relevant biological systems.

[1]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[2]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[3]  M. Fannes,et al.  Ground states of VBS models on cayley trees , 1992 .

[4]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[5]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[6]  Vladimir A. Kazeev,et al.  Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..

[7]  S. Dolgov TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.

[8]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[9]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[10]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[11]  S. V. DOLGOV,et al.  Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation , 2012, SIAM J. Sci. Comput..

[12]  Ivan P. Gavrilyuk,et al.  Quantized-TT-Cayley Transform for Computing the Dynamics and the Spectrum of High-Dimensional Hamiltonians , 2011, Comput. Methods Appl. Math..

[13]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[14]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[15]  Mauricio Barahona,et al.  Perfect sampling of the master equation for gene regulatory networks. , 2006, Biophysical journal.

[16]  Hans-Dieter Meyer,et al.  Multidimensional quantum dynamics : MCTDH theory and applications , 2009 .

[17]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[18]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[19]  T. Schulte-Herbrüggen,et al.  Computations in quantum tensor networks , 2012, 1212.5005.

[20]  W. Huisinga,et al.  A Dynamical Low-Rank Approach to the Chemical Master Equation , 2008, Bulletin of mathematical biology.

[21]  Lei Tang,et al.  Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations , 2011, SIAM J. Sci. Comput..

[22]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[23]  Elías Cueto,et al.  Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions , 2012, International journal for numerical methods in biomedical engineering.

[24]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[25]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[26]  C. Lubich,et al.  A projector-splitting integrator for dynamical low-rank approximation , 2013, BIT Numerical Mathematics.

[27]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[28]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[29]  Vladimir A. Kazeev,et al.  Tensor Approximation of Stationary Distributions of Chemical Reaction Networks , 2015, SIAM J. Matrix Anal. Appl..

[30]  Andreas Hellander,et al.  Hybrid method for the chemical master equation , 2007, J. Comput. Phys..

[31]  M. Ptashne A genetic switch : phage λ and higher organisms , 1992 .

[32]  Virginie Ehrlacher,et al.  Convergence of a greedy algorithm for high-dimensional convex nonlinear problems , 2010, 1004.0095.

[33]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[34]  Reinhold Schneider,et al.  Efficient time-stepping scheme for dynamics on TT-manifolds , 2012 .

[35]  VLADIMIR A. KAZEEV,et al.  Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..

[36]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[37]  Hermann G. Matthies,et al.  Efficient Analysis of High Dimensional Data in Tensor Formats , 2012 .

[38]  C. J. Burden,et al.  A solver for the stochastic master equation applied to gene regulatory networks , 2007 .

[39]  Dan ie l T. Gil lespie A rigorous derivation of the chemical master equation , 1992 .

[40]  M. Kramer,et al.  Sensitivity Analysis in Chemical Kinetics , 1983 .

[41]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[42]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[43]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[44]  Markus Weimar Breaking the curse of dimensionality , 2015 .

[45]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[46]  D. Gillespie The Chemical Langevin and Fokker−Planck Equations for the Reversible Isomerization Reaction† , 2002 .

[47]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[48]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[49]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[50]  Kwang-Hyun Cho,et al.  Modelling the dynamics of signalling pathways. , 2008, Essays in biochemistry.

[51]  Endre Süli,et al.  Greedy Approximation of High-Dimensional Ornstein–Uhlenbeck Operators , 2011, Found. Comput. Math..

[52]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[53]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[54]  Tobias Jahnke,et al.  Error Bound for Piecewise Deterministic Processes Modeling Stochastic Reaction Systems , 2012, Multiscale Model. Simul..

[55]  R. Steuer Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations. , 2004, Journal of theoretical biology.

[56]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..

[57]  Othmar Koch,et al.  Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..

[58]  Ivan V. Oseledets,et al.  Fast adaptive interpolation of multi-dimensional arrays in tensor train format , 2011, The 2011 International Workshop on Multidimensional (nD) Systems.

[59]  B. Khoromskij Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .

[60]  T. Schulte-Herbrüggen,et al.  Exploiting matrix symmetries and physical symmetries in matrix product states and tensor trains , 2013, 1301.0746.

[61]  Christine Tobler,et al.  Multilevel preconditioning and low‐rank tensor iteration for space–time simultaneous discretizations of parabolic PDEs , 2015, Numer. Linear Algebra Appl..

[62]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[63]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[64]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[65]  Ivan Oseledets,et al.  Fast solution of multi-dimensional parabolic problems in the tensor train/quantized tensor train–format with initial application to the Fokker-Planck equation , 2012 .

[66]  B. Khoromskij,et al.  Tensor-product approach to global time-space-parametric discretization of chemical master equation , 2012 .

[67]  Boris N. Khoromskij,et al.  Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..

[68]  Y. Maday,et al.  Results and Questions on a Nonlinear Approximation Approach for Solving High-dimensional Partial Differential Equations , 2008, 0811.0474.

[69]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[70]  J. Goutsias Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. , 2005, The Journal of chemical physics.

[71]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[72]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[73]  Vladimir A. Kazeev,et al.  Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..

[74]  Markus Hegland,et al.  On the numerical solution of the chemical master equation with sums of rank one tensors , 2011 .

[75]  Daniel Kressner,et al.  Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..

[76]  O. S. Lebedeva Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case , 2010 .

[77]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[78]  Boris N. Khoromskij,et al.  Superfast Fourier Transform Using QTT Approximation , 2012 .

[79]  G. Worth,et al.  Multidimensional Quantum Dynamics , 2009 .

[80]  Boris N. Khoromskij,et al.  Two-Level QTT-Tucker Format for Optimized Tensor Calculus , 2013, SIAM J. Matrix Anal. Appl..