Existence and Convergence Results for the Galerkin Approximation of an Electronic Density Functional

We formulate and analyze a model for the study of finite clusters of atoms or localized defects in infinite crystals based on orbital-free density functional theory. We show that the resulting constrained optimization problem has a minimizer and we provide a careful analysis of the solvability of the associated Euler–Lagrange equation. Based on these results, and using tools from saddle-point theory and nonlinear analysis, we then show that a Galerkin discretization has a solution that converges to the correct limit.

[1]  Yvon Maday,et al.  Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models , 2010, 1003.1612.

[2]  Yvon Maday,et al.  Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..

[3]  Y. Maday,et al.  Numerical analysis of the planewave discretization of orbital-free and Kohn-Sham models Part I: The Thomas-Fermi-von Weizacker model , 2009, 0909.1464.

[4]  Quasicontinuum-like reduction of density functional theory calculations of nanostructures. , 2008, Journal of nanoscience and nanotechnology.

[5]  E. Weinan,et al.  A sub-linear scaling algorithm for computing the electronic structure of materials , 2007 .

[6]  Kaushik Bhattacharya,et al.  Quasi-continuum orbital-free density-functional theory (QC-OFDFT) , 2007 .

[7]  A Remark on ”An Efficient Real Space Method for Orbital-Free Density-Functional Theory” , 2007 .

[8]  Kaushik Bhattacharya,et al.  Non-periodic finite-element formulation of orbital-free density functional theory , 2006 .

[9]  C. García-Cervera,et al.  An Efficient Real Space Method for Orbital-Free Density-Functional Theory , 2006 .

[10]  Vincent L. Lignères,et al.  An Introduction to Orbital-Free Density Functional Theory , 2005 .

[11]  Mihai Anitescu,et al.  SIMULATING NANOSCALE PROCESSES IN SOLIDS USING DFT AND THE QUASICONTINUUM METHOD , 2005 .

[12]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .

[13]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[14]  Emily A. Carter,et al.  Linear-scaling parallel algorithms for the first principles treatment of metals ✩ , 2000 .

[15]  L. Evans,et al.  Partial Differential Equations , 2000 .

[16]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[17]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[18]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[19]  Pierre-Louis Lions,et al.  The Mathematical Theory of Thermodynamic Limits: Thomas--Fermi Type Models , 1998 .

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[21]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[22]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[23]  Ghosh,et al.  Density-functional theory of two-dimensional electron gas in a magnetic field. , 1989, Physical review. A, General physics.

[24]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[25]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[26]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[27]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[28]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[29]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[30]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[31]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[32]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[33]  Rolf Rannacher,et al.  Finite element methods for nonlinear elliptic systems of second order , 1980 .

[34]  J. Zowe,et al.  Second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979 .

[35]  Helmut Maurer,et al.  First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979, Math. Program..

[36]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[37]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[38]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[39]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.