Simplifying the Synthesis of Nonproteinogenic Amino Acids via Palladium-Catalyzed δ-Methyl C–H Olefination of Aliphatic Amines and Amino Acids

Transition metal-catalyzed directing group assisted C–H functionalizations provide a straightforward access to a wide variety of nonproteinogenic amino acids. While altering the side chain of an existing natural amino acids is one way, introducing a functional group to an aliphatic amine to synthesize versatile unnatural amino acids is another exciting avenue. In this work, we explore both the possibilities by the palladium-catalyzed δ-C(sp3)–H olefination of aliphatic amines and amino acids. A diverse substrate scope including sequential difunctionalizations followed by post synthetic transformations were achieved to understand the applicability of the current protocol. An in-depth mechanistic study was carried out to learn the mode of the reaction pathway.

[1]  Wajid Ali,et al.  Pd-Catalyzed Dual-γ-1,1-C(sp3)–H Activation of Free Aliphatic Acids with Allyl–O Moieties , 2022, ACS Catalysis.

[2]  F. Glorius,et al.  Photochemical single-step synthesis of β-amino acid derivatives from alkenes and (hetero)arenes , 2022, Nature Chemistry.

[3]  N. Sotomayor,et al.  Palladium-catalyzed oxidative arene C–H alkenylation reactions involving olefins , 2022, Trends in Chemistry.

[4]  R. Koenigs,et al.  Visible‐Light‐Induced, Single‐Metal‐Catalyzed, Directed C−H Functionalization: Metal‐Substrate‐Bound Complexes as Light‐Harvesting Agents , 2022, Angewandte Chemie.

[5]  D. Werz,et al.  Pd-catalysed C–H functionalisation of free carboxylic acids , 2022, Chemical science.

[6]  G. Bistoni,et al.  Harnessing the ambiphilicity of silyl nitronates in a catalytic asymmetric approach to aliphatic β3-amino acids , 2021, Nature Catalysis.

[7]  D. Maiti,et al.  Deciphering the Role of Silver in Palladium-Catalyzed C–H Functionalizations , 2021, ACS Catalysis.

[8]  Patrick D. Parker,et al.  Towards α,α-disubstituted amino acids containing vicinal stereocenters via stereoselective transition-metal catalyzed allylation , 2021, Arkivoc.

[9]  D. Maiti,et al.  Ligand‐Enabled δ‐C(sp 3 )−H Borylation of Aliphatic Amines , 2021, Angewandte Chemie.

[10]  D. Maiti,et al.  Ligand Enabled δ-C(sp3)-H Borylation of Aliphatic Amines. , 2021, Angewandte Chemie.

[11]  J. Carretero,et al.  Overcoming the Necessity of γ-Substitution in δ-C(sp3)–H Arylation: Pd-Catalyzed Derivatization of α-Amino Acids , 2021 .

[12]  Chen Zhu,et al.  Catalytic Asymmetric Synthesis of Unprotected β2-Amino Acids , 2021, Journal of the American Chemical Society.

[13]  Arnab Dutta,et al.  Organopalladium Intermediates in Coordination-Directed C(sp3)-H Functionalizations , 2021 .

[14]  Wajid Ali,et al.  Recent development in transition metal-catalysed C–H olefination , 2021, Chemical science.

[15]  D. Blackmond,et al.  Insights into the Role of Transient Chiral Mediators and Pyridone Ligands in Asymmetric Pd-Catalyzed C-H Functionalization. , 2020, Journal of Organic Chemistry.

[16]  D. Maiti,et al.  Diverse strategies for transition metal catalyzed distal C(sp3)–H functionalizations , 2020, Chemical science.

[17]  A. Datta,et al.  Harnessing the Efficacy of 2-Pyridone Ligands for Pd-catalyzed (β/γ)-C(sp3)─H Activation. , 2020, The Journal of organic chemistry.

[18]  Yun Ding,et al.  Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics , 2020, Amino Acids.

[19]  Do Soon Kim,et al.  Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro , 2020, Nature Communications.

[20]  Wajid Ali,et al.  A direct route to six and seven membered lactones via γ-C(sp3)–H activation: a simple protocol to build molecular complexity† , 2020, Chemical science.

[21]  Hao Qi,et al.  Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems , 2020, Frontiers in Bioengineering and Biotechnology.

[22]  R. O'hair,et al.  Photoexcited Pd(ii) auxiliaries enable light-induced control in C(sp3)–H bond functionalisation† , 2020, Chemical science.

[23]  R. Tomar,et al.  Assembling of medium/long chain-based β-arylated unnatural amino acid derivatives via the Pd(II)-catalyzed sp3 β-C-H arylation and a short route for rolipram-type derivatives , 2019, Tetrahedron.

[24]  Xinglong Zhang,et al.  Iterative Arylation of Amino Acids and Aliphatic Amines via δ-C(sp3 )-H Activation: Experimental and Computational Exploration. , 2019, Angewandte Chemie.

[25]  Felix J R Klauck,et al.  Visible-Light-Mediated Deaminative Three-Component Dicarbofunctionalization of Styrenes with Benzylic Radicals , 2018, ACS Catalysis.

[26]  L. Ackermann,et al.  Ruthenium(II)biscarboxylate‐Catalyzed Hydrogen‐Isotope Exchange by Alkene C−H Activation , 2018, ChemCatChem.

[27]  L. Ackermann,et al.  Peptid-Diversifizierung durch positionsselektive C-H-Aktivierung im späten Synthesestadium , 2018, Angewandte Chemie.

[28]  A. Kapdi,et al.  Late-Stage Peptide Diversification by Position-Selective C-H Activation. , 2018, Angewandte Chemie.

[29]  C. Senanayake,et al.  Ligand-Enabled γ-C(sp3)-H Activation of Ketones. , 2018, Journal of the American Chemical Society.

[30]  Chandra M. R. Volla,et al.  Palladium catalyzed direct aliphatic γC(sp3)-H alkenylation with alkenes and alkenyl iodides. , 2017, Chemical communications.

[31]  R. B. Sunoj,et al.  Experimental and Computational Studies on Remote γ-C(sp3)-H Silylation and Germanylation of Aliphatic Carboxamides , 2017 .

[32]  Q. Peng,et al.  Detailed Mechanistic Studies on Palladium-Catalyzed Selective C-H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling. , 2017, Journal of the American Chemical Society.

[33]  M. Blaskovich Unusual Amino Acids in Medicinal Chemistry. , 2016, Journal of medicinal chemistry.

[34]  jin-quan yu,et al.  Ligand‐Promoted C(sp3)—H Olefination en Route to Multi‐Functionalized Pyrazoles. , 2016 .

[35]  Bing‐Feng Shi,et al.  Site-Selective Alkenylation of δ-C(sp(3))-H Bonds with Alkynes via a Six-Membered Palladacycle. , 2016, Journal of the American Chemical Society.

[36]  A. Stepan,et al.  Oxidative diversification of amino acids and peptides by small-molecule iron catalysis , 2016, Nature.

[37]  jin-quan yu,et al.  Ligand-Promoted C(sp(3) )-H Olefination en Route to Multi-functionalized Pyrazoles. , 2016, Chemistry.

[38]  G. He,et al.  Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp(3) C-H Functionalization. , 2016, Accounts of chemical research.

[39]  jin-quan yu,et al.  Ligand-Enabled γ-C(sp(3))-H Olefination of Amines: En Route to Pyrrolidines. , 2016, Journal of the American Chemical Society.

[40]  D. Musaev,et al.  Factors Impacting the Mechanism of the Mono-N-Protected Amino Acid Ligand-Assisted and Directing-Group-Mediated C–H Activation Catalyzed by Pd(II) Complex , 2015 .

[41]  B. Vergani,et al.  Amino acidic scaffolds bearing unnatural side chains: an old idea generates new and versatile tools for the life sciences. , 2014, Bioorganic & medicinal chemistry letters.

[42]  M. Brimble,et al.  C-H functionalization in the synthesis of amino acids and peptides. , 2014, Chemical reviews.

[43]  D. Musaev,et al.  Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C-H bond functionalization. , 2014, Chemical Society reviews.

[44]  G. He,et al.  Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones by the Palladium-Catalyzed Intramolecular Amination of Unactivated γ C(sp3)—H Bonds. , 2014 .

[45]  W. Gong,et al.  Ligand-Enabled γ-C–H Olefination and Carbonylation: Construction of β-Quaternary Carbon Centers , 2014, Journal of the American Chemical Society.

[46]  Jillian E. Spangler,et al.  Ligand-Controlled C(sp3)–H Arylation and Olefination in Synthesis of Unnatural Chiral α–Amino Acids , 2014, Science.

[47]  G. He,et al.  Stereoselective Synthesis of β-Alkylated α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated Methylene C(sp3)—H Bonds with Primary Alkyl Halides. , 2014 .

[48]  Mengyang Fan,et al.  Palladium-catalyzed direct functionalization of 2-aminobutanoic acid derivatives: application of a convenient and versatile auxiliary. , 2013, Angewandte Chemie.

[49]  G. He,et al.  Use of a readily removable auxiliary group for the synthesis of pyrrolidones by the palladium-catalyzed intramolecular amination of unactivated γ C(sp(3))-H bonds. , 2013, Angewandte Chemie.

[50]  Chao Wu,et al.  Role of Mono-N-protected Amino Acid Ligands in Palladium(II)-Catalyzed Dehydrogenative Heck Reactions of Electron-Deficient (Hetero)arenes: Experimental and Computational Studies , 2013 .

[51]  G. He,et al.  Stereoselective synthesis of β-alkylated α-amino acids via palladium-catalyzed alkylation of unactivated methylene C(sp3)-H bonds with primary alkyl halides. , 2013, Journal of the American Chemical Society.

[52]  M. Paddon-Row,et al.  Domino cycloaddition organocascades of dendralenes. , 2013, Angewandte Chemie.

[53]  H. Hopf,et al.  Dendralenes Branch Out: Cross-Conjugated Oligoenes Allow the Rapid Generation of Molecular Complexity , 2012 .

[54]  L. Tran,et al.  Nonnatural amino acid synthesis by using carbon-hydrogen bond functionalization methodology. , 2012, Angewandte Chemie.

[55]  H. Hopf,et al.  Dendralenes branch out: cross-conjugated oligoenes allow the rapid generation of molecular complexity. , 2012, Angewandte Chemie.

[56]  N. Chatani,et al.  Palladium-catalyzed direct ethynylation of C(sp3)-H bonds in aliphatic carboxylic acid derivatives. , 2011, Journal of the American Chemical Society.

[57]  J. Lutz,et al.  Sequence-controlled polymerizations: the next Holy Grail in polymer science? , 2010 .

[58]  Chao‐Jun Li,et al.  Site-specific C-functionalization of free-(NH) peptides and glycine derivatives via direct C–H bond functionalization , 2009, Proceedings of the National Academy of Sciences.

[59]  E. Corey,et al.  Novel acetoxylation and C-C coupling reactions at unactivated positions in alpha-amino acid derivatives. , 2006, Organic letters.

[60]  S. P. Romeril,et al.  On the mechanism of the palladium(II)-catalyzed decarboxylative olefination of arene carboxylic acids. Crystallographic characterization of non-phosphine palladium(II) intermediates and observation of their stepwise transformation in Heck-like processes. , 2005, Journal of the American Chemical Society.

[61]  K. Godula,et al.  C-C bond formation via C-H bond activation: synthesis of the core of teleocidin B4. , 2002, Journal of the American Chemical Society.

[62]  G. Balavoine,et al.  Cyclopalladated 2-t-butyl-4,4-dimethyl-2-oxazoline : its preparation, and use in the functionalisation of a non-activated carbon-hydrogen bond , 1990 .

[63]  C. G. Newton,et al.  Pseudopterosin synthesis from a chiral cross-conjugated hydrocarbon through a series of cycloadditions. , 2015, Nature chemistry.

[64]  V. Soloshonok,et al.  Asymmetric synthesis and application of α-amino acids , 2009 .