Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers

Abstract Magnetic particle imaging (MPI) is an attractive new modality for imaging distributions of iron oxide nanoparticle tracers in vivo. With exceptional contrast, high sensitivity, and good spatial resolution, MPI shows promise for clinical imaging in angiography and oncology. Critically, MPI requires high-quality iron oxide nanoparticle tracers with tailored magnetic and surface properties to achieve its full potential. In this review, we discuss optimizing iron oxide nanoparticles’ physical, magnetic, and pharmacokinetic properties for MPI, highlighting results from our recent work in which we demonstrated tailored, biocompatible iron oxide nanoparticle tracers that provided two times better linear spatial resolution and five times better signal-to-noise ratio than Resovist.

[1]  Marc Respaud,et al.  Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization , 2011 .

[2]  Thorsten M. Buzug,et al.  Magnetic nanoparticles : particle science, imaging technology, and clinical applications : proceedings of the First Internationa Workshop on Magnetic Particle Imaging , 2010 .

[3]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[4]  P. Reimer,et al.  Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications , 2003, European Radiology.

[5]  Bernhard Gleich,et al.  Signal encoding in magnetic particle imaging: properties of the system function , 2009, BMC Medical Imaging.

[6]  Patrick W. Goodwill,et al.  Ferrohydrodynamic relaxometry for magnetic particle imaging , 2011 .

[7]  H. Arami,et al.  Chitosan-Coated Iron Oxide Nanoparticles for Molecular Imaging and Drug Delivery , 2011 .

[8]  Rebekah Drezek,et al.  In vivo biodistribution of nanoparticles. , 2011, Nanomedicine.

[9]  Xiang-Yang Liu,et al.  Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques , 2006 .

[10]  J. Hirschfelder Kinetic Theory of Liquids. , 1956 .

[11]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[12]  Kannan M Krishnan,et al.  Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. , 2012, Journal of biomedical materials research. Part A.

[13]  H. Arami,et al.  Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI) , 2013, IEEE Transactions on Magnetics.

[14]  B Gleich,et al.  Three-dimensional real-time in vivo magnetic particle imaging , 2009, Physics in medicine and biology.

[15]  Nguyen Thanh Huong,et al.  Surface modification of iron oxide nanoparticles and their conjuntion with water soluble polymers for biomedical application , 2009 .

[16]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[17]  Bernhard Gleich,et al.  Analysis of a 3-D System Function Measured for Magnetic Particle Imaging , 2012, IEEE Transactions on Medical Imaging.

[18]  T. Buzug,et al.  A SPECTROMETER TO MEASURE THE USABILITY OF NANOPARTICLES FOR MAGNETIC PARTICLE IMAGING , 2010 .

[19]  L. Trahms,et al.  Potential of Improving MPI Performance by Magnetic Separation , 2012 .

[20]  Emine Ulku Saritas,et al.  X‐Space MPI: Magnetic Nanoparticles for Safe Medical Imaging , 2012, Advanced materials.

[21]  M. Shliomis REVIEWS OF TOPICAL PROBLEMS: Magnetic fluids , 1974 .

[22]  Kannan M. Krishnan,et al.  Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. , 2013, Biomaterials.

[23]  Lutz Trahms,et al.  How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance , 2011 .

[24]  R Weissleder,et al.  Superparamagnetic iron oxide: pharmacokinetics and toxicity. , 1989, AJR. American journal of roentgenology.

[25]  Kannan M Krishnan,et al.  Tracer design for magnetic particle imaging (invited). , 2012, Journal of applied physics.

[26]  N. A. Usov,et al.  Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia , 2012 .

[27]  Hamed Arami,et al.  Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. , 2013, Medical physics.

[28]  J. Frankel Kinetic theory of liquids , 1946 .

[29]  I︠A︡kov Ilʹich Frenkelʹ Kinetic Theory of Liquids , 1955 .

[30]  S. Charap,et al.  Physics of magnetism , 1964 .

[31]  C. Galbán,et al.  Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. , 2011, Biomaterials.

[32]  Kevin R Minard,et al.  Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. , 2011, Medical physics.

[33]  G. Bertotti Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers , 1998 .

[34]  Bernhard Gleich,et al.  Point Spread Function Analysis of Magnetic Particles , 2012 .

[35]  Patrick W. Goodwill,et al.  Multidimensional X-Space Magnetic Particle Imaging , 2011, IEEE Transactions on Medical Imaging.

[36]  Bernhard Gleich,et al.  Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles , 2012, Physics in medicine and biology.

[37]  R. Pazdur,et al.  FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease , 2010, American journal of hematology.

[38]  Hemant Sarin,et al.  Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability , 2010, Journal of angiogenesis research.

[39]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[40]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[41]  Patrick W. Goodwill,et al.  The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation , 2010, IEEE Transactions on Medical Imaging.

[42]  Warren C W Chan,et al.  The effect of nanoparticle size, shape, and surface chemistry on biological systems. , 2012, Annual review of biomedical engineering.