Quasi-Newton Methods for Markov Chain Monte Carlo
暂无分享,去创建一个
J. Shawe-Taylor | K. Weinberger | P. Bartlett | Rs | Zemel
[1] Walter R. Gilks,et al. Adaptive Direction Sampling , 1994 .
[2] Ben Calderhead,et al. Riemannian Manifold Hamiltonian Monte Carlo , 2009, 0907.1100.
[3] A. Gourlay,et al. Rank-one and Rank-two Corrections to Positive Definite Matrices Expressed in Product Form , 1973 .
[4] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[5] Yuan Qi,et al. Bayesian Conditional Random Fields , 2005, AISTATS.
[6] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[7] Arnaud Doucet,et al. Discussions on "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" , 2010, 1011.0834.
[8] Max Welling,et al. Bayesian Random Fields: The Bethe-Laplace Approximation , 2006, UAI.
[9] Jeffrey S. Rosenthal,et al. Coupling and Ergodicity of Adaptive MCMC , 2007 .
[10] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[11] S. Chib,et al. Posterior Simulation and Bayes Factors in Panel Count Data Models , 1998 .
[12] Jun S. Liu,et al. The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .