An analytical electron microscopy study of paraequilibrium cementite precipitation in ultra-high-strength steel

To support quantitative design of ultra-high-strength (UHS) secondary-hardening steels, the precipitation of cementite prior to the precipitation of the M2C phase is investigated using a model alloy. The microstructure of cementite is investigated by transmission electron microscopy (TEM) techniques. Consistent with earlier studies on tempering of Fe-C martensite, lattice imaging of cementite suggests microsyntactic intergrowth of M5C2 (Hägg carbide). The concentration of substitutional alloying elements in cementite are quantified by high-resolution analytical electron microscopy (AEM) using extraction replica specimens. Quantification of the substitutional elements in cementite confirms its paraequilibrium (PE) state with ferrite at the very early stage of tempering. The implications of these results are discussed in terms of the thermodynamic driving force for nucleation of the primary-strengthening, coherent M2C carbide phase. The ferrite-cementite PE condition reduces the carbon concentration in the ferrite matrix with a significant reduction of M2C driving force. The kinetics of dissolution of PE cementite and its transition to other intermediate states will also influence the kinetics of secondary hardening behavior in UHS steels.

[1]  G. Lorimer,et al.  The quantitative analysis of thin specimens , 1975 .

[2]  L. Höglund,et al.  An experimental and theoretical study of cementite dissolution in an Fe-Cr-C alloy , 1991 .

[3]  M. Kusunoki,et al.  Structure of the Precipitated Particles at the Third Stage of Tempering of Martensitic Iron-Carbon Steel Studied by High Resolution Electron Microscopy , 1981 .

[4]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[5]  A. Allen,et al.  SANS and TEM studies of isothermal M2C carbide precipitation in ultrahigh strength AF1410 steels , 1993 .

[6]  J. Ågren,et al.  A regular solution model for phases with several components and sublattices, suitable for computer applications , 1981 .

[7]  M. Hillert,et al.  The Regular Solution Model for Stoichiometric Phases and Ionic Melts. , 1970 .

[8]  M. Hillert,et al.  A model for alloying in ferromagnetic metals , 1978 .

[9]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[10]  J. Mandel,et al.  The Statistical Analysis of Experimental Data. , 1965 .

[11]  J. Ågren,et al.  Morphology of cementite decomposition in an fe-cr-c alloy , 1991 .

[12]  Y. Ohmori χ-carbide Formation and Its Transformation into Cementite during the Tempering of Martensite , 1972 .

[13]  A. Davenport,et al.  The Secondary Hardening of Tungsten Steels , 1975 .

[14]  L. F. Porter,et al.  Strength and toughness of Fe-10ni alloys containing C, Cr, Mo, and Co , 1973 .

[15]  J. Langer,et al.  Kinetics of nucleation in near-critical fluids , 1980 .

[16]  S. Allen Foil thickness measurements from convergent-beam diffraction patterns , 1981 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Gregory B Olson,et al.  Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation , 1994 .

[19]  O. Krisement,et al.  Strukturuntersuchungen an Karbiden des Eisens, Wolframs und Chroms mit thermischen Neutronen , 1962 .

[20]  Elaine Evelyn Hunter,et al.  Practical Electron Microscopy: A Beginner's Illustrated Guide , 1984 .

[21]  C. Wert Diffusion Coefficient of C in α -Iron , 1950 .

[22]  Y. Ohmori,et al.  The Precipitation of Carbides during Tempering of High Carbon Martensite , 1971 .

[23]  J. B. Sande,et al.  Carbide precipitation during stage I tempering of Fe-Ni-C martensites , 1989 .

[24]  M. Kusunoki,et al.  Crystallographic Study of the Tempering of Martensitic Carbon Steel by Electron Microscopy and Diffraction , 1983 .

[25]  J. Kirkaldy DIFFUSION IN MULTICOMPONENT METALLIC SYSTEMS: I. PHENOMENOLOGICAL THEORY FOR SUBSTITUTIONAL SOLID SOLUTION ALLOYS , 1958 .

[26]  K. Hono,et al.  Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite , 1994 .

[27]  A. Inoue,et al.  Study of the Precipitation of x-Carbide in the Tempering Process of Some High Carbon Steels , 1972 .

[28]  F. Herbstein,et al.  Comparison of X-ray and neutron-diffraction refinements of the structure of cementite Fe3C , 1964 .

[29]  G. Speich,et al.  Elastic constants of martensite , 1973 .

[30]  Gregory B Olson,et al.  Kinetics of F.c.c. → b.c.c. heterogeneous martensitic nucleation-II. Thermal activation , 1994 .

[31]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[32]  D. Coates Diffusional growth limitation and hardenability , 1973 .

[33]  D. Coates Diffusion-controlled precipitate growth in ternary systems I , 1972 .

[34]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[35]  A. Bowen,et al.  Solute diffusion in alpha- and gamma-iron , 1970 .

[36]  J. Kirkaldy,et al.  Thermodynamics controlling the proeutectoid ferrite transformations in Fe-C-Mn alloys , 1972 .

[37]  David B. Williams,et al.  Practical Analytical Electron Microscopy In Materials Science , 1984 .

[38]  Institute of Physics , 1936, Nature.

[39]  H. Bhadeshia,et al.  Diffusional formation of ferrite in iron and its alloys , 1987 .

[40]  Michael J. Aziz,et al.  Model for solute redistribution during rapid solidification , 1982 .

[41]  S. J. B. Reed,et al.  Electron Microprobe Analysis , 1975 .

[42]  C. Little,et al.  Development of a strong (1650MNm−2 tensile strength) martensitic steel having good fracture toughness , 1979 .