Fundamental limits on quantum dynamics based on entropy change

It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use of entropy change in characterizing evolution processes. Recently, a lower bound on the entropy change was provided in the work of Buscemi, Das, and Wilde~[Phys.~Rev.~A~93(6),~062314~(2016)]. We explore the limit that this bound places on the physical evolution of a quantum system and discuss how these limits can be used as witnesses to characterize quantum dynamics. In particular, we derive a lower limit on the rate of entropy change for memoryless quantum dynamics, and we argue that it provides a witness of non-unitality. This limit on the rate of entropy change leads to definitions of several witnesses for testing memory effects in quantum dynamics. Furthermore, from the aforementioned lower bound on entropy change, we obtain a measure of non-unitarity for unital evolutions.

[1]  Franco Nori,et al.  Fisher information under decoherence in Bloch representation , 2012, 1212.0917.

[2]  I. Hirschman,et al.  A Note on Entropy , 1957 .

[3]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[4]  H. Narnhofer,et al.  Entropy behaviour under completely positive maps , 1988 .

[5]  Jyrki Piilo,et al.  Measure for the non-Markovianity of quantum processes , 2010, 1002.2583.

[6]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[7]  Jacques Payen,et al.  Reflections on the Motive Power of Fire by Sadi Carnot, and other Papers on the Second Law of Thermodynamics, by E. Clapeyron and R. Clausius, edited with an Introduction by E. Mendoza , 1971 .

[8]  Lindbladian operators, von Neumann entropy and energy conservation in time-dependent quantum open systems , 2016, 1601.07874.

[9]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[10]  U. Weiss Quantum Dissipative Systems , 1993 .

[11]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[12]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[13]  P. Bergmann Stochasticity And Partial Order Doubly Stochastic Maps And Unitary Mixing , 2016 .

[14]  K. Audenaert,et al.  Continuity bounds on the quantum relative entropy -- II , 2005, 1105.2656.

[15]  W. Beckner Inequalities in Fourier analysis , 1975 .

[16]  S. Lloyd,et al.  Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results , 2010, 1004.4787.

[17]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[18]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[19]  V. Baccetti,et al.  Infinite Shannon entropy , 2012, 1212.5630.

[20]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[21]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[23]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[24]  O. Hölder Ueber einen Mittelwerthabsatz , 1889 .

[25]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[26]  D. Reeb,et al.  Monotonicity of the Quantum Relative Entropy Under Positive Maps , 2015, 1512.06117.

[27]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[28]  Howard J. Carmichael,et al.  An Open Systems Approach to Quantum Optics: Lectures Presented at the Universite Libre De Bruxelles, October 28 to November 4, 1991 , 1993 .

[29]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[30]  R. Konig,et al.  The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.

[31]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[32]  R. F. Streater Convergence of the quantum Boltzmann map , 1985 .

[33]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[34]  Pranab Sen,et al.  Invertible quantum operations and perfect encryption of quantum states , 2006, Quantum Inf. Comput..

[35]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[36]  S. Haseli,et al.  A measure of non-Markovianity for unital quantum dynamical maps , 2014, Quantum Inf. Process..

[37]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[38]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[39]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[40]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[41]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[42]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[43]  N. Datta,et al.  Contractivity properties of a quantum diffusion semigroup , 2016, 1607.04242.

[44]  M. Horodecki,et al.  Dynamics of quantum entanglement , 2000, quant-ph/0008115.

[45]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[46]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[47]  Teiko Heinosaari,et al.  The semigroup structure of Gaussian channels , 2009, 0909.0408.

[48]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[49]  K. Modi,et al.  Quantum thermodynamics of general quantum processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[51]  H. Nagaoka,et al.  Strong Converse and Stein's Lemma in the Quantum Hypothesis Testing , 1999, quant-ph/9906090.

[52]  Diego A. Wisniacki,et al.  Measuring and using non-Markovianity , 2015, 1505.03503.

[53]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[54]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[55]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[56]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[57]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[58]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[59]  K. Audenaert,et al.  Continuity bounds on the quantum relative entropy , 2005, quant-ph/0503218.

[60]  D. Chruściński,et al.  Degree of non-Markovianity of quantum evolution. , 2013, Physical review letters.

[61]  E. Davies,et al.  Markovian master equations , 1974 .

[62]  H. Falk Inequalities of J. W. Gibbs , 1970 .

[63]  Phil Attard,et al.  Non-equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications , 2012 .

[64]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[65]  R. Bhatia Matrix Analysis , 1996 .

[66]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[67]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[68]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[69]  D. W. Robinson,et al.  Equilibrium states models in quantum statistical mechanics , 1997 .

[70]  Akio Fujiwara,et al.  Estimation of a generalized amplitude-damping channel , 2004 .

[71]  'Alvaro M. Alhambra,et al.  Dynamical maps, quantum detailed balance, and the Petz recovery map , 2016, 1609.07496.

[72]  Li Li,et al.  Canonical form of master equations and characterization of non-Markovianity , 2010, 1009.0845.

[73]  Gian Paolo Beretta,et al.  Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy production and other nonunitary processes , 2009, 0907.1977.

[74]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[75]  C. Helstrom Quantum detection and estimation theory , 1969 .

[76]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[77]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[78]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[79]  Jing Liu,et al.  Nonunital non-Markovianity of quantum dynamics , 2013, 1301.5763.

[80]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[81]  Guillaume Aubrun On Almost Randomizing Channels with a Short Kraus Decomposition , 2008, 0805.2900.

[82]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[83]  Andrzej Kossakowski,et al.  Markovianity criteria for quantum evolution , 2012, 1201.5987.

[84]  Mark M. Wilde,et al.  Quantum Reading Capacity: General Definition and Bounds , 2017, IEEE Transactions on Information Theory.

[85]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[86]  W. Rudin Principles of mathematical analysis , 1964 .

[87]  Mauro Paternostro,et al.  Role of environmental correlations in the non-Markovian dynamics of a spin system , 2011, 1106.5447.

[88]  Michael M. Wolf,et al.  Entropy Production of Doubly Stochastic Quantum Channels , 2015 .

[89]  F. Hiai,et al.  Sufficiency, KMS condition and relative entropy in von Neumann algebras. , 1981 .

[90]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[91]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[92]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[93]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[94]  Mark M. Wilde,et al.  Approximate reversibility in the context of entropy gain, information gain, and complete positivity , 2016, 1601.01207.