Topology- and linking number-controlled synthesis of a closed 3 link chain of single-stranded DNA.

In spite of remarkable progress in synthetic methodology, a closed three-link chain (one of the simplest but the most important topological isomers of [3]catenane) has never been prepared. Here we synthesized this isomer in high yield from three oligonucleotides which are designed to optimize various chemical and steric factors in their mutual hybridization.

[1]  E. Wasserman,et al.  THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1 , 1960 .

[2]  M. Frank-Kamenetskii,et al.  Monitoring single-stranded DNA secondary structure formation by determining the topological state of DNA catenanes. , 2006, Biophysical journal.

[3]  N. Cozzarelli,et al.  The stereostructure of knots and catenanes produced by phage λ integrative recombination: implications for mechanism and DNA structure , 1985, Cell.

[4]  E. Kool,et al.  Direct comparison of A- and T-strand minor groove interactions in DNA curvature at A tracts. , 2004, Biochemistry.

[5]  D. Leigh,et al.  A Star of David catenane. , 2014, Nature chemistry.

[6]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[7]  I. Willner,et al.  Switchable catalytic DNA catenanes. , 2015, Nano letters.

[8]  Laura G. Sánchez-Lozada,et al.  Correction: Corrigendum: Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome , 2013, Nature Communications.

[9]  Julián Valero,et al.  Allosteric Control of Oxidative Catalysis by a DNA Rotaxane Nanostructure. , 2017, Journal of the American Chemical Society.

[10]  Erik Winfree,et al.  One Dimensional Boundaries for DNA Tile Self-Assembly , 2003, DNA.

[11]  Gareth W. V. Cave,et al.  Molecular Borromean Rings , 2004, Science.

[12]  C. Yee,et al.  Strategies To Assemble Catenanes with Multiple Interlocked Macrocycles. , 2017, Inorganic chemistry.

[13]  Itamar Willner,et al.  A dynamically programmed DNA transporter. , 2012, Angewandte Chemie.

[14]  Tanya K. Ronson,et al.  Two-stage directed self-assembly of a cyclic [3]catenane. , 2015, Nature chemistry.

[15]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[16]  R. Bar-Ziv,et al.  Effects of DNA sequence and structure on binding of RecA to single-stranded DNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Rongmei Zhu,et al.  Stepwise halide-triggered double and triple catenation of self-assembled coordination cages. , 2015, Angewandte Chemie.

[18]  K. Mislow,et al.  Topological chirality and achirality of links , 1995 .

[19]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[20]  P. Beer,et al.  Progress in the synthesis and exploitation of catenanes since the Millennium. , 2014, Chemical Society reviews.

[21]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[22]  A. L. Hubbard,et al.  Host-guest interactions template: the synthesis of a [3]catenane. , 2004, Chemical communications.

[23]  D. Bates,et al.  DNA replication triggered by double-stranded breaks in E. coli: Dependence on homologous recombination functions , 1994, Cell.

[24]  C. Campbell,et al.  Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. , 2011, Angewandte Chemie.

[25]  R. Nolte,et al.  Functional interlocked systems. , 2014, Chemical Society reviews.

[26]  J Fraser Stoddart,et al.  Chemical topology: complex molecular knots, links, and entanglements. , 2011, Chemical reviews.

[27]  Itamar Willner,et al.  Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines , 2013, Nature Communications.

[28]  H. R. Wilson,et al.  Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids , 1953, Nature.

[29]  Alexander Heckel,et al.  Construction of a structurally defined double-stranded DNA catenane. , 2011, Nano letters.

[30]  N C Seeman,et al.  Design of immobile nucleic acid junctions. , 1983, Biophysical journal.

[31]  A. Stasiak,et al.  Construction and electrophoretic migration of single-stranded DNA knots and catenanes. , 2002, Nucleic acids research.

[32]  T. Gunnlaugsson,et al.  Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions. , 2014, Chemical communications.

[33]  M. Komiyama,et al.  Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics , 2017 .

[34]  Itamar Willner,et al.  A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures , 2008, Proceedings of the National Academy of Sciences.

[35]  Nadrian C Seeman,et al.  Structural DNA nanotechnology: growing along with Nano Letters. , 2010, Nano letters.

[36]  Guangqi Wu,et al.  Efficient Synthesis of Topologically Linked Three‐Ring DNA Catenanes , 2016, Chembiochem : a European journal of chemical biology.

[37]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.