Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction

Raman spectroscopy has enabled researchers to map the specific chemical makeup of surfaces, solutions, and even cells. However, the inherent insensitivity of the technique makes it difficult to use and statistically complicated. When Raman active molecules are near gold or silver nanoparticles, the Raman intensity is significantly amplified. This phenomenon is referred to as surface-enhanced Raman spectroscopy (SERS). The extent of SERS enhancement is due to a variety of factors such as nanoparticle size, shape, material, and configuration. The choice of Raman reporters and protective coatings will also influence SERS enhancement. This review provides an introduction to how these factors influence signal enhancement and how to optimize them during synthesis of SERS nanoparticles.

[1]  Yukihiro Ozaki,et al.  Part III: Surface-Enhanced Raman Scattering of Amino Acids and Their Homodipeptide Monolayers Deposited onto Colloidal Gold Surface , 2005, Applied spectroscopy.

[2]  Dhiraj Kumar,et al.  Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media , 2011 .

[3]  Jiajing Zhou,et al.  SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. , 2014, Journal of the American Chemical Society.

[4]  W. Fritzsche,et al.  Nonlinear Dependences of Optical Properties of Spherical Core–Shell Silver–Gold and Gold–Silver Nanoparticles on Their Parameters , 2013, Plasmonics.

[5]  Bernhard Lendl,et al.  A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride , 2003 .

[6]  Seongmin Hong,et al.  Optimal size of gold nanoparticles for surface-enhanced raman spectroscopy under different conditions , 2013 .

[7]  Snigdhamayee Praharaj,et al.  Synthesis of Normal and Inverted Gold−Silver Core−Shell Architectures in β-Cyclodextrin and Their Applications in SERS , 2007 .

[8]  Shui-Tong Lee,et al.  Silicon nanowire based single-molecule SERS sensor. , 2013, Nanoscale.

[9]  Eric C. Le Ru,et al.  Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects , 2008 .

[10]  Dhabih V. Chulhai,et al.  Determining Molecular Orientation With Surface-Enhanced Raman Scattering Using Inhomogenous Electric Fields , 2013 .

[11]  Jemma G. Kelly,et al.  Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes. , 2011, ACS nano.

[12]  M. Konno,et al.  Deposition of Gold Nanoparticles on Polystyrene Spheres by Electroless Metal Plating Technique , 2007 .

[13]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[14]  M. Albrecht,et al.  Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength , 1979 .

[15]  Hauser Ernst,et al.  Experiments in colloid chemistry , 1940 .

[16]  D. Goia,et al.  Core-shell gold/silver nanoparticles: synthesis and optical properties. , 2013, Journal of colloid and interface science.

[17]  G. Charron,et al.  A scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy. , 2011, Nano letters.

[18]  M. Člupek,et al.  In situ SERS spectroelectrochemical analysis of antioxidants deposited on copper substrates: what is the effect of applied potential on sorption behavior? , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[19]  M. Quinten Optical Properties of Nanoparticle Systems: Mie and Beyond , 2011 .

[20]  F. Golmar,et al.  Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots , 2012, Nature Communications.

[21]  Nicolas Guillot,et al.  The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures , 2012 .

[22]  Sanjiv S. Gambhir,et al.  Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[23]  R. Drezek,et al.  Silica-gold nanoshells as potential intraoperative molecular probes for HER2-overexpression in ex vivo breast tissue using near-infrared reflectance confocal microscopy , 2010, Breast Cancer Research and Treatment.

[24]  Catherine J Murphy,et al.  Seeded high yield synthesis of short Au nanorods in aqueous solution. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[25]  I. Chourpa,et al.  Polyethylene-glycol-Stabilized Ag Nanoparticles for Surface-Enhanced Raman Scattering Spectroscopy: Ag Surface Accessibility Studied Using Metalation of Free-Base Porphyrins , 2014 .

[26]  T. Pradeep,et al.  Investigation of the role of NaBH4 in the chemical synthesis of gold nanorods , 2010 .

[27]  Cheng Zong,et al.  Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. , 2014, Analytical chemistry.

[28]  Shuming Nie,et al.  Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. , 2003, Analytical chemistry.

[29]  I. Dékány,et al.  Synthesis and characterization of Ag/Au alloy and core(Ag)–shell(Au) nanoparticles , 2012 .

[30]  D. A. Contreras-Solorio,et al.  Electronic structure of cubic GaN/AlGaN quantum wells , 2003 .

[31]  C. Mirkin,et al.  Effect of size, shape, composition, and support film on localized surface plasmon resonance frequency: A single particle approach applied to silver bipyramids and gold and silver nanocubes , 2009 .

[32]  D. A. Long Intensities in Raman spectra I. A bond polarizability theory , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  Min Han,et al.  Photochemical fabrication of hierarchical Ag nanoparticle arrays from domain-selective Ag(+)-loading on block copolymer templates. , 2009, Chemical communications.

[34]  Michelle Foster,et al.  ON THE MECHANISM OF CHEMICAL ENHANCEMENT IN SURFACE-ENHANCED RAMAN SCATTERING , 1995 .

[35]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[36]  Yung Doug Suh,et al.  Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status. , 2013, Physical chemistry chemical physics : PCCP.

[37]  T. Vargo,et al.  Modeling interband transitions in silver nanoparticle-fluoropolymer composites. , 2005, The journal of physical chemistry. B.

[38]  M. Bally,et al.  Selective Recognition of Rituximab-Functionalized Gold Nanoparticles by Lymphoma Cells Studied with 3D Imaging , 2009 .

[39]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[40]  Influence of photostability on single-molecule surface enhanced Raman scattering enhancement factors. , 2009, Analytical chemistry.

[41]  Franz R. Aussenegg,et al.  Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .

[42]  Robert W. Redmond,et al.  Optical probing and imaging of live cells using SERS labels , 2009 .

[43]  Jun Hu,et al.  Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres , 2012 .

[44]  Zhongtao Li,et al.  LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy. , 2013, Physical chemistry chemical physics : PCCP.

[45]  M. Li,et al.  Optical properties of Au/Ag core/shell nanoshuttles. , 2008, Optics express.

[46]  P. Hildebrandt,et al.  Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver , 1984 .

[47]  Tuan Vo-Dinh,et al.  Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[48]  Gilbert C Walker,et al.  Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles. , 2010, Cancer letters.

[49]  Chen-Han Huang,et al.  Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration , 2012 .

[50]  R. Frontiera,et al.  SERS: Materials, applications, and the future , 2012 .

[51]  S. Maenosono,et al.  A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure , 2011 .

[52]  Duncan Graham,et al.  Rationally designed SERS active silica coated silver nanoparticles. , 2011, Chemical communications.

[53]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[54]  Michael H. Huang,et al.  Direct high-yield synthesis of high aspect ratio gold nanorods , 2007 .

[55]  S. Mathur,et al.  Improved stability of "naked" gold nanoparticles enabled by in situ coating with mono and multivalent thiol PEG ligands. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[56]  Luis M Liz-Marzán,et al.  Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles , 2010, Journal of The Royal Society Interface.

[57]  Sanjiv S Gambhir,et al.  Raman's “Effect” on Molecular Imaging , 2011, The Journal of Nuclear Medicine.

[58]  Ling Zhang,et al.  Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. , 2013, Nanoscale.

[59]  Tuan Vo-Dinh,et al.  Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[60]  Younan Xia,et al.  Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery , 2010, Expert opinion on drug delivery.

[61]  Bing Zhao,et al.  Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. , 2002, Chemical communications.

[62]  A. Kudelski Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecules adsorb preferentially on highly SERS-active sites? , 2005 .

[63]  Zhida Xu,et al.  Surface-enhanced Raman nanodomes , 2010, Nanotechnology.

[64]  Sachin Kumar,et al.  Seed-Mediated Growth of Uniform Gold Nanoparticle Arrays , 2007 .

[65]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[66]  R. Nishimura,et al.  One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[67]  Duncan Graham,et al.  Surface-enhanced Raman scattering , 1998 .

[68]  Steven R. Emory,et al.  Anchoring molecular chromophores to colloidal gold nanocrystals: surface-enhanced Raman evidence for strong electronic coupling and irreversible structural locking. , 2012, Journal of the American Chemical Society.

[69]  J. Kimling,et al.  Turkevich method for gold nanoparticle synthesis revisited. , 2006, The journal of physical chemistry. B.

[70]  T. Vo‐Dinh,et al.  Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity. , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[71]  Guenter Schmid,et al.  Large clusters and colloids. Metals in the embryonic state , 1992 .

[72]  Olga Lyandres,et al.  Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. , 2008, Diabetes technology & therapeutics.

[73]  David A. Fattal,et al.  Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy , 2009 .

[74]  Yu Zhang,et al.  Quasi-spherical silver nanoparticles: aqueous synthesis and size control by the seed-mediated Lee-Meisel method. , 2013, Journal of colloid and interface science.

[75]  M. Thompson,et al.  Colloidal Metal Deposition onto Functionalized Polystyrene Microspheres , 1999 .

[76]  M. Epple,et al.  Synthesis of PVP‐coated silver nanoparticles and their biological activity towards human mesenchymal stem cells , 2009 .

[77]  W. Smith,et al.  Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering. , 2007, Angewandte Chemie.

[78]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[79]  Seung Yong Lee,et al.  Dispersion in the SERS enhancement with silver nanocube dimers. , 2010, ACS nano.

[80]  Shenhao Chen,et al.  A convenient phase transfer route for Ag nanoparticles , 2004 .

[81]  Jun‐Hyun Kim,et al.  Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[82]  D. Meisel,et al.  Adsorption and surface-enhanced Raman of dyes on silver and gold sols , 1982 .

[83]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[84]  J L West,et al.  A whole blood immunoassay using gold nanoshells. , 2003, Analytical chemistry.

[85]  A. Florea,et al.  One-step synthesis of pegylated gold nanoparticles with tunable surface charge , 2013 .

[86]  Andrew A Berlin,et al.  Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. , 2005, Nano letters.

[87]  George C Schatz,et al.  Electronic structure methods for studying surface-enhanced Raman scattering. , 2008, Chemical Society reviews.

[88]  Latha A. Gearheart,et al.  Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. , 2006, Physical chemistry chemical physics : PCCP.

[89]  Jun Li,et al.  Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction , 2009 .

[90]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[91]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[92]  R. Birke,et al.  DFT, SERS, and Single-Molecule SERS of Crystal Violet , 2008 .

[93]  T. Abdallah,et al.  Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique , 2008 .

[94]  A. S. Davis,et al.  Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) for the identification of eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates. , 2012, The journal of physical chemistry. A.

[95]  B. Ankamwar,et al.  Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies , 2012 .

[96]  Leif O. Brown,et al.  Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. , 2005, Journal of the American Chemical Society.

[97]  Giles R. Scuderi,et al.  The Basic Principles , 2006 .

[98]  R. V. Duyne,et al.  Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass , 1993 .

[99]  R. Maher,et al.  Enhancement factor averaging and the photostability of probes in SERS vibrational pumping. , 2007, Physical chemistry chemical physics : PCCP.

[100]  Limin Wu,et al.  Novel Method to Fabricate SiO2/Ag Composite Spheres and Their Catalytic, Surface-Enhanced Raman Scattering Properties , 2007 .

[101]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[102]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[103]  Kevin G. Stamplecoskie,et al.  Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy , 2011 .

[104]  T. Vo‐Dinh Chapter 2 – SURFACE-ENHANCED RAMAN SCATTERING , 1995 .

[105]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[106]  V. Pol,et al.  Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[107]  Earl J. Bergey,et al.  Nanochemistry: Synthesis and Characterization of Multifunctional Nanoclinics for Biological Applications , 2002 .

[108]  Luke P. Lee,et al.  Peptide-Nanoparticle Hybrid SERS Probe for Dynamic Detection of Active Cancer Biomarker Enzymes , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[109]  J. C. Wren,et al.  Gamma-radiolysis-assisted cobalt oxide nanoparticle formation. , 2013, Physical chemistry chemical physics : PCCP.

[110]  J. Gooding,et al.  Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles : Systematic Control Using Polyethyleneimine , 2009 .

[111]  Wensheng Shi,et al.  Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. , 2012, Physical chemistry chemical physics : PCCP.

[112]  R. V. Van Duyne,et al.  A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. , 2004, Analytical chemistry.

[113]  Anant Kumar Singh,et al.  Development of a long-range surface-enhanced Raman spectroscopy ruler. , 2012, Journal of the American Chemical Society.

[114]  F. Emmerling,et al.  SERS enhancement of gold nanospheres of defined size , 2011 .

[115]  Catherine J. Murphy,et al.  Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles , 2001 .

[116]  D. Drescher,et al.  Intracellular SERS hybrid probes using BSA–reporter conjugates , 2013, Analytical and Bioanalytical Chemistry.

[117]  Xue-wei Cao,et al.  On the enhanced Raman scattering of the nanosize semiconductor: A couple of cylinders (silicon and silver) , 2009 .

[118]  Peter Beighton,et al.  de la Chapelle, A. , 1997 .

[119]  George C Schatz,et al.  Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. , 2009, Journal of the American Chemical Society.

[120]  R. Johnston,et al.  Structures and optical properties of 4-5 nm bimetallic AgAu nanoparticles. , 2008, Faraday discussions.

[121]  M. Moskovits Surface-Enhanced Raman Spectroscopy: a Brief Perspective , 2006 .

[122]  Shaoyi Jiang,et al.  Multifunctional magnetic-plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. , 2012, Biosensors & bioelectronics.

[123]  I. Kukushkin,et al.  Long-range manifestation of surface-enhanced Raman scattering , 2012, 1212.2782.

[124]  A. Burger,et al.  Surface plasmon resonance in CdSe semiconductor coated with gold nanoparticles. , 2008, Optics Express.

[125]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[126]  Minjeong Ha,et al.  Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. , 2014, Nanoscale.

[127]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[128]  J. Rubim,et al.  Surface-Enhanced Resonance Raman (SERR) Spectra of Methylene Blue Adsorbed on a Silver Electrode , 2003 .

[129]  C. Moore,et al.  Lightning Rod Improvement Studies , 2000 .

[130]  M. Ashokkumar,et al.  Sonochemical fomation of gold sols , 2002 .

[131]  Mingwei Chen,et al.  Single molecule detection from a large-scale SERS-active Au79Ag21 substrate , 2011, Scientific reports.

[132]  Yu Wang,et al.  Surface-enhanced Raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles. , 2013, Analytical chemistry.

[133]  Younan Xia,et al.  Measuring the SERS Enhancement Factors of Dimers with Different Structures Constructed from Silver Nanocubes. , 2010, Chemical physics letters.

[134]  Keith T. Carron,et al.  Determination of the Distance Dependence and Experimental Effects for Modified SERS Substrates Based on Self-Assembled Monolayers Formed Using Alkanethiols , 1999 .

[135]  Sailing He,et al.  Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres , 2011 .

[136]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[137]  N. Pieczonka,et al.  SERRS for single-molecule detection of dye-labeled phospholipids in Langmuir-Blodgett monolayers. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[138]  G. Hermanson,et al.  Preparation of Colloidal Gold-Labeled Proteins , 1996 .

[139]  Hye-Young Park,et al.  Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles , 2007 .

[140]  M. Natan,et al.  Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering , 2003 .

[141]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[142]  Yong Taik Lim,et al.  Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials. , 2003, Journal of colloid and interface science.

[143]  Hong Yang,et al.  Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. , 2013, Chemical Society reviews.

[144]  Catherine J. Murphy,et al.  Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles , 2001 .

[145]  Pierre-Michel Adam,et al.  Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays , 2005 .

[146]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.