Krylov complexity of modular Hamiltonian evolution

We investigate the complexity of states and operators evolved with the modular Hamiltonian by using the Krylov basis. In the first part, we formulate the problem for states and analyse different examples, including quantum mechanics, two-dimensional conformal field theories and random modular Hamiltonians, focusing on relations with the entanglement spectrum. We find that the modular Lanczos spectrum provides a different approach to quantum entanglement, opening new avenues in many-body systems and holography. In the second part, we focus on the modular evolution of operators and states excited by local operators in two-dimensional conformal field theories. We find that, at late modular time, the spread complexity is universally governed by the modular Lyapunov exponent $\lambda^{mod}_L=2\pi$ and is proportional to the local temperature of the modular Hamiltonian. Our analysis provides explicit examples where entanglement entropy is indeed not enough, however the entanglement spectrum is, and encodes the same information as complexity.

[1]  Keun-Young Kim,et al.  Spectral and Krylov Complexity in Billiard Systems , 2023, 2306.11632.

[2]  Arpan Bhattacharyya,et al.  Operator growth and Krylov Complexity in Bose-Hubbard Model , 2023, 2306.05542.

[3]  Norihiro Iizuka,et al.  Krylov complexity in the IP matrix model , 2023, 2306.04805.

[4]  Watse Sybesma,et al.  Krylov complexity in a natural basis for the Schr\"odinger algebra , 2023, 2306.03133.

[5]  S. Razzaque,et al.  Quantum Spread Complexity in Neutrino Oscillations , 2023, 2305.17025.

[6]  Keiju Murata,et al.  Krylov complexity and chaos in quantum mechanics , 2023, Journal of High Energy Physics.

[7]  M. Gautam,et al.  Spread Complexity in free fermion models , 2023, 2305.12115.

[8]  A. Banerjee,et al.  Quantum state complexity meets many-body scars , 2023, 2305.13322.

[9]  E. Rabinovici,et al.  A bulk manifestation of Krylov complexity , 2023, 2305.04355.

[10]  J. Erdmenger,et al.  Universal chaotic dynamics from Krylov space , 2023, 2303.12151.

[11]  Qi Zhou,et al.  Building Krylov complexity from circuit complexity , 2023, 2303.07343.

[12]  A. Kundu,et al.  State Dependence of Krylov Complexity in $2d$ CFTs , 2023, 2303.03426.

[13]  A. Campo,et al.  Shortcuts to Adiabaticity in Krylov Space , 2023, Physical Review X.

[14]  A. Campo,et al.  Geometric Operator Quantum Speed Limit, Wegner Hamiltonian Flow and Operator Growth , 2023, 2301.04372.

[15]  E. Tonni,et al.  Probing RG flows, symmetry resolution and quench dynamics through the capacity of entanglement , 2023, Journal of High Energy Physics.

[16]  J. Boer,et al.  Sequences of resource monotones from modular Hamiltonian polynomials , 2023, Physical Review Research.

[17]  Keun-Young Kim,et al.  Krylov complexity in free and interacting scalar field theories with bounded power spectrum , 2022, Journal of High Energy Physics.

[18]  M. Smolkin,et al.  Krylov complexity in quantum field theory, and beyond , 2022, 2212.14429.

[19]  V. Balasubramanian,et al.  Microscopic Origin of the Entropy of Astrophysical Black Holes. , 2022, Physical review letters.

[20]  V. Balasubramanian,et al.  Microscopic origin of the entropy of black holes in general relativity , 2022, 2212.02447.

[21]  Surbhi Khetrapal Chaos and operator growth in 2d CFT , 2022, Journal of High Energy Physics.

[22]  E. Tonni,et al.  Modular conjugations in 2D conformal field theory and holographic bit threads , 2022, Journal of High Energy Physics.

[23]  Henry W. Lin The bulk Hilbert space of double scaled SYK , 2022, Journal of High Energy Physics.

[24]  Nitin Gupta,et al.  Spread complexity and topological transitions in the Kitaev chain , 2022, Journal of High Energy Physics.

[25]  Pratik Nandy,et al.  Probing quantum scars and weak ergodicity breaking through quantum complexity , 2022, Physical Review B.

[26]  A. Campo,et al.  Quantum speed limits on operator flows and correlation functions , 2022, Quantum.

[27]  E. Rabinovici,et al.  Krylov complexity from integrability to chaos , 2022, Journal of High Energy Physics.

[28]  W. Mück,et al.  Krylov complexity and orthogonal polynomials , 2022, Nuclear Physics B.

[29]  Si-Nong Liu,et al.  Quantum complexity and topological phases of matter , 2022, Physical Review B.

[30]  S. Choudhury,et al.  Krylov Complexity in Quantum Field Theory , 2022, Nuclear Physics B.

[31]  Pratik Nandy,et al.  Krylov complexity in saddle-dominated scrambling , 2022, Journal of High Energy Physics.

[32]  V. Balasubramanian,et al.  Quantum chaos and the complexity of spread of states , 2022, Physical Review D.

[33]  A. del Campo,et al.  Ultimate speed limits to the growth of operator complexity , 2022, Communications Physics.

[34]  Hong Liu,et al.  Emergent times in holographic duality , 2021, 2112.12156.

[35]  Pengfei Zhang,et al.  A two-way approach to out-of-time-order correlators , 2021, Journal of High Energy Physics.

[36]  Dimitrios Patramanis Probing the entanglement of operator growth , 2021, 2111.03424.

[37]  S. Chapman,et al.  Quantum computational complexity from quantum information to black holes and back , 2021, The European Physical Journal C.

[38]  S. Datta,et al.  Operator growth in 2d CFT , 2021, Journal of High Energy Physics.

[39]  Dario Rosa,et al.  Operator delocalization in quantum networks , 2021, Physical Review A.

[40]  Javier M. Magán,et al.  Geometry of Krylov complexity , 2021, Physical Review Research.

[41]  B. Czech,et al.  Quantum information in holographic duality , 2021, Reports on progress in physics. Physical Society.

[42]  Arjun Kar,et al.  Random matrix theory for complexity growth and black hole interiors , 2021, Journal of High Energy Physics.

[43]  Pratik Nandy Capacity of entanglement in local operators , 2021, Journal of High Energy Physics.

[44]  T. Nishioka,et al.  Replica wormholes and capacity of entanglement , 2021, Journal of High Energy Physics.

[45]  M. Smolkin,et al.  Krylov complexity in conformal field theory , 2021, Physical Review D.

[46]  Kazumi Okuyama Capacity of entanglement in random pure state. , 2021, 2103.08909.

[47]  E. Tonni,et al.  Modular Hamiltonians for the massless Dirac field in the presence of a boundary , 2020, Journal of High Energy Physics.

[48]  E. Rabinovici,et al.  Operator complexity: a journey to the edge of Krylov space , 2020, Journal of High Energy Physics.

[49]  J. Simón,et al.  On operator growth and emergent Poincaré symmetries , 2020, 2002.03865.

[50]  J. Boer,et al.  Holographic order from modular chaos , 2019, Journal of High Energy Physics.

[51]  S. Shenker,et al.  Replica wormholes and the black hole interior , 2019, Journal of High Energy Physics.

[52]  E. Rabinovici,et al.  On the evolution of operator complexity beyond scrambling , 2019, Journal of High Energy Physics.

[53]  S. Hollands On the Modular Operator of Mutli-component Regions in Chiral CFT , 2019, Communications in Mathematical Physics.

[54]  J. Boer,et al.  A modular sewing kit for entanglement wedges , 2019, Journal of High Energy Physics.

[55]  E. Altman,et al.  A Universal Operator Growth Hypothesis , 2018, Physical Review X.

[56]  X. Qi,et al.  Quantum epidemiology: operator growth, thermal effects, and SYK , 2018, Journal of High Energy Physics.

[57]  Nima Lashkari,et al.  Constraining quantum fields using modular theory , 2018, Journal of High Energy Physics.

[58]  J. Boer,et al.  Aspects of capacity of entanglement , 2018, Physical Review D.

[59]  Ho Tat Lam,et al.  Expanding the black hole interior: partially entangled thermal states in SYK , 2018, Journal of High Energy Physics.

[60]  Daniel A. Roberts,et al.  Operator growth in the SYK model , 2018, Journal of High Energy Physics.

[61]  Aitor Lewkowycz,et al.  Bulk locality from modular flow , 2017, 1704.05464.

[62]  G. Lifschytz,et al.  Local bulk physics from intersecting modular Hamiltonians , 2017, 1703.06523.

[63]  J. Cardy,et al.  Entanglement Hamiltonians in two-dimensional conformal field theory , 2016, 1608.01283.

[64]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[65]  Aitor Lewkowycz,et al.  Relative entropy equals bulk relative entropy , 2015, 1512.06431.

[66]  S. Raju,et al.  Local Operators in the Eternal Black Hole. , 2015, Physical review letters.

[67]  S. J. Suh,et al.  The gravity duals of modular Hamiltonians , 2014, 1412.8465.

[68]  Leonard Susskind,et al.  Entanglement is not enough , 2014, 1411.0690.

[69]  T. Takayanagi,et al.  Quantum entanglement of localized excited states at finite temperature , 2014, Journal of High Energy Physics.

[70]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[71]  T. Takayanagi,et al.  Entanglement of local operators in large-N conformal field theories , 2014, 1405.5946.

[72]  T. Takayanagi,et al.  Quantum dimension as entanglement entropy in two dimensional conformal field theories , 2014 .

[73]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[74]  T. Takayanagi,et al.  Quantum entanglement of local operators in conformal field theories. , 2014, Physical review letters.

[75]  I. Klich,et al.  Entanglement temperature and entanglement entropy of excited states , 2013, 1305.3291.

[76]  J. Maldacena,et al.  Time evolution of entanglement entropy from black hole interiors , 2013, 1303.1080.

[77]  P. Hayden,et al.  Quantum computation vs. firewalls , 2013, 1301.4504.

[78]  Robert C. Myers,et al.  Towards a derivation of holographic entanglement entropy , 2011, 1102.0440.

[79]  X. Qi,et al.  Entanglement entropy and entanglement spectrum of the Kitaev model. , 2010, Physical review letters.

[80]  R. Longo,et al.  GEOMETRIC MODULAR ACTION FOR DISJOINT INTERVALS AND BOUNDARY CONFORMAL FIELD THEORY , 2009, 0912.1106.

[81]  I. Peschel,et al.  Reduced density matrices and entanglement entropy in free lattice models , 2009, 0906.1663.

[82]  S. C. Bariloche,et al.  Entanglement entropy in free quantum field theory , 2009, 0905.2562.

[83]  M. Huerta,et al.  Reduced density matrix and internal dynamics for multicomponent regions , 2009, 0903.5284.

[84]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[85]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[86]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[87]  I. Peschel LETTER TO THE EDITOR: Calculation of reduced density matrices from correlation functions , 2002, cond-mat/0212631.

[88]  Erwin Schrödinger International,et al.  On revolutionizing quantum field theory with Tomita’s modular theory , 2000 .

[89]  D. Bessis,et al.  The Lanczos algorithm for extensive many-body systems in the thermodynamic limit , 1999, math-ph/9907016.

[90]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[91]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[92]  H. Umezawa,et al.  THERMO FIELD DYNAMICS , 1996 .

[93]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[94]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[95]  Hollenberg Plaquette expansion in lattice Hamiltonian models. , 1993, Physical review. D, Particles and fields.

[96]  R. Longo,et al.  Modular structure of the local algebras associated with the free massless scalar field theory , 1982 .

[97]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[98]  Gerhard Müller,et al.  The recursion method : application to many-body dynamics , 1994 .

[99]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[100]  竹崎 正道 Tomita's theory of modular Hilbert algebras and its applications , 1970 .