Thomas rotation and the parametrization of the Lorentz transformation group
暂无分享,去创建一个
[1] D. M. Fradkin. Representation of the active Lorentz transformation for particle dynamics , 1982 .
[2] F. R. Halpern. Special relativity and quantum mechanics , 1968 .
[3] H. Goldstein. Prehistory of the ’’Runge–Lenz’’ vector , 1975 .
[4] C. Moller,et al. The Theory of Relativity , 1953, The Mathematical Gazette.
[5] Antal E. Fekete,et al. Real Linear Algebra , 1985 .
[6] J. Wittenburg,et al. Dynamics of systems of rigid bodies , 1977 .
[7] L. Brand,et al. Vector and tensor analysis , 1947 .
[8] David Hestenes,et al. Space-time algebra , 1966 .
[9] W. E. Baylis,et al. Special relativity with Clifford algebras and 2×2 matrices, and the exact product of two boosts , 1988 .
[10] J. M. Aguirregabiria,et al. Composition law and contractions of the Poincare group , 1986 .
[11] P. M. Morse,et al. Relativity: The Special Theory , 1957 .
[12] G. Uhlenbeck. FIFTY YEARS OF SPIN: Personal reminiscences , 1976 .
[13] Combinatorial and functional identities in one-parameter matrices , 1986 .
[14] Jean-Marc Lévy-Leblond,et al. Galilei Group and Galilean Invariance , 1971 .
[15] R. Skinner. Relativity for Scientists and Engineers , 1982 .
[16] J. Lévy-Leblond. Galilei Group and Nonrelativistic Quantum Mechanics , 1963 .
[17] H. Goldstein,et al. Classical Mechanics , 1951, Mathematical Gazette.
[18] F. Metzger,et al. A simple formula for combining rotations and Lorentz boosts , 1986 .
[19] J. Krause. Lorentz transformations as space‐time reflections , 1977 .
[20] Young S. Kim,et al. Eulerian parametrization of Wigner’s little groups and gauge transformations in terms of rotations in two‐component spinors , 1986 .
[21] Ernest M. Loebl,et al. Group theory and its applications , 1968 .
[22] L. H. Thomas. The Motion of the Spinning Electron , 1926, Nature.
[23] C. Pei,et al. An addition theorem of wigner rotation matrices and its applications in photodissociation processes , 1986 .
[24] A. Ben-menahem. Wigner’s rotation revisited , 1985 .
[25] R. Gilmore,et al. Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .
[26] Coordinate‐free rotation formalism , 1976 .
[27] Richard H. Rand,et al. Computer algebra in applied mathematics: An introduction to MACSYMA , 1984 .
[28] P. Girard,et al. The quaternion group and modern physics , 1984 .
[29] N. Salingaros. The Lorentz group and the Thomas precession. II. Exact results for the product of two boosts , 1986 .
[30] C. B. V. Wyk. Lorentz transformations in terms of initial and final vectors , 1986 .
[31] Eugene P. Wigner,et al. 80 Years of Professor Wigner's Seminal Work "On Unitary Representations of the Inhomogeneous Lorentz Group" , 2021 .
[32] Marilyn E. Noz,et al. Theory and Applications of the Poincaré Group , 1986 .
[33] J. Mitchard. The Theory of Relativity , 1921, Nature.
[34] A. Chakrabarti. Applications of the Lorentz Transformation Properties of Canonical Spin Tensors , 1964 .
[35] A. Ungar. The Relativistic Noncommutative Nonassociative Group of Velocities and the Thomas Rotation , 1989 .
[36] G. P. Fisher. The Thomas Precession , 1972 .
[37] N. Mukunda,et al. Classical Dynamics: A Modern Perspective , 1974 .
[38] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .