Thomas rotation and the parametrization of the Lorentz transformation group

Two successive pure Lorentz transformations are equivalent to a pure Lorentz transformation preceded by a 3×3 space rotation, called a Thomas rotation. When applied to the gyration of the rotation axis of a spinning mass, Thomas rotation gives rise to the well-knownThomas precession. A 3×3 parametric, unimodular, orthogonal matrix that represents the Thomas rotation is presented and studied. This matrix representation enables the Lorentz transformation group to be parametrized by two physical observables: the (3-dimensional) relative velocity and orientation between inertial frames. The resulting parametrization of the Lorentz group, in turn, enables the composition of successive Lorentz transformations to be given by parameter composition. This composition is continuously deformed into a corresponding, well-known Galilean transformation composition by letting the speed of light approach infinity. Finally, as an application the Lorentz transformation with given orientation parameter is uniquely expressed in terms of an initial and a final time-like 4-vector.

[1]  D. M. Fradkin Representation of the active Lorentz transformation for particle dynamics , 1982 .

[2]  F. R. Halpern Special relativity and quantum mechanics , 1968 .

[3]  H. Goldstein Prehistory of the ’’Runge–Lenz’’ vector , 1975 .

[4]  C. Moller,et al.  The Theory of Relativity , 1953, The Mathematical Gazette.

[5]  Antal E. Fekete,et al.  Real Linear Algebra , 1985 .

[6]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[7]  L. Brand,et al.  Vector and tensor analysis , 1947 .

[8]  David Hestenes,et al.  Space-time algebra , 1966 .

[9]  W. E. Baylis,et al.  Special relativity with Clifford algebras and 2×2 matrices, and the exact product of two boosts , 1988 .

[10]  J. M. Aguirregabiria,et al.  Composition law and contractions of the Poincare group , 1986 .

[11]  P. M. Morse,et al.  Relativity: The Special Theory , 1957 .

[12]  G. Uhlenbeck FIFTY YEARS OF SPIN: Personal reminiscences , 1976 .

[13]  Combinatorial and functional identities in one-parameter matrices , 1986 .

[14]  Jean-Marc Lévy-Leblond,et al.  Galilei Group and Galilean Invariance , 1971 .

[15]  R. Skinner Relativity for Scientists and Engineers , 1982 .

[16]  J. Lévy-Leblond Galilei Group and Nonrelativistic Quantum Mechanics , 1963 .

[17]  H. Goldstein,et al.  Classical Mechanics , 1951, Mathematical Gazette.

[18]  F. Metzger,et al.  A simple formula for combining rotations and Lorentz boosts , 1986 .

[19]  J. Krause Lorentz transformations as space‐time reflections , 1977 .

[20]  Young S. Kim,et al.  Eulerian parametrization of Wigner’s little groups and gauge transformations in terms of rotations in two‐component spinors , 1986 .

[21]  Ernest M. Loebl,et al.  Group theory and its applications , 1968 .

[22]  L. H. Thomas The Motion of the Spinning Electron , 1926, Nature.

[23]  C. Pei,et al.  An addition theorem of wigner rotation matrices and its applications in photodissociation processes , 1986 .

[24]  A. Ben-menahem Wigner’s rotation revisited , 1985 .

[25]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[26]  Coordinate‐free rotation formalism , 1976 .

[27]  Richard H. Rand,et al.  Computer algebra in applied mathematics: An introduction to MACSYMA , 1984 .

[28]  P. Girard,et al.  The quaternion group and modern physics , 1984 .

[29]  N. Salingaros The Lorentz group and the Thomas precession. II. Exact results for the product of two boosts , 1986 .

[30]  C. B. V. Wyk Lorentz transformations in terms of initial and final vectors , 1986 .

[31]  Eugene P. Wigner,et al.  80 Years of Professor Wigner's Seminal Work "On Unitary Representations of the Inhomogeneous Lorentz Group" , 2021 .

[32]  Marilyn E. Noz,et al.  Theory and Applications of the Poincaré Group , 1986 .

[33]  J. Mitchard The Theory of Relativity , 1921, Nature.

[34]  A. Chakrabarti Applications of the Lorentz Transformation Properties of Canonical Spin Tensors , 1964 .

[35]  A. Ungar The Relativistic Noncommutative Nonassociative Group of Velocities and the Thomas Rotation , 1989 .

[36]  G. P. Fisher The Thomas Precession , 1972 .

[37]  N. Mukunda,et al.  Classical Dynamics: A Modern Perspective , 1974 .

[38]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .