Terahertz electrical writing speed in an antiferromagnetic memory

We demonstrate terahertz electrical writing speed in an antiferromagnetic memory at an energy of the gigahertz speed writing. The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band.

[1]  Tobias Kampfrath,et al.  Nonlinear spin control by terahertz-driven anisotropy fields , 2016, Nature Photonics.

[2]  T. Jungwirth,et al.  Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe , 2015, Nature Communications.

[3]  Eric E. Fullerton,et al.  Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy , 2010 .

[4]  F. Freimuth,et al.  Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets , 2016, 1604.07590.

[5]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[6]  T. Kampfrath,et al.  Terahertz-field-induced optical birefringence in common window and substrate materials. , 2015, Optics express.

[7]  Peter Uhd Jepsen,et al.  Non-resonant terahertz field enhancement in periodically arranged nanoslits , 2012 .

[8]  Mehdi Baradaran Tahoori,et al.  Ultra-Fast and High-Reliability SOT-MRAM: From Cache Replacement to Normally-Off Computing , 2016, IEEE Transactions on Multi-Scale Computing Systems.

[9]  K. Tanaka,et al.  Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 and applications to nonlinear optics , 2011, Other Conferences.

[10]  Jörg Raabe,et al.  Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. , 2017, Nature nanotechnology.

[11]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[12]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[13]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[14]  Alfred Leitenstorfer,et al.  Coherent terahertz control of antiferromagnetic spin waves , 2011 .

[15]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[16]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[17]  Masashi Yamaguchi,et al.  Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap” , 2008 .

[18]  J. Kuhl,et al.  Velocity matching by pulse front tilting for large area THz-pulse generation. , 2002, Optics express.

[19]  T. Jungwirth,et al.  Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs. , 2016, Physical review letters.

[20]  C. Kittel Theory of Antiferromagnetic Resonance , 1951 .

[21]  G. Schatz,et al.  Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. , 2010, 1008.2490.

[22]  J. Wunderlich,et al.  Current polarity-dependent manipulation of antiferromagnetic domains , 2017, Nature Nanotechnology.

[23]  J. Sinova,et al.  Relativistic Néel-order fields induced by electrical current in antiferromagnets. , 2014, Physical review letters.

[24]  P. Kužel,et al.  Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy. , 2010, Optics express.

[25]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[26]  T. Jungwirth,et al.  Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility , 2017, Nature Communications.

[27]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[28]  Christopher Marrows,et al.  Addressing an antiferromagnetic memory , 2016, Science.

[29]  S. Mangin,et al.  Spin-transfer pulse switching: From the dynamic to the thermally activated regime , 2010, 1009.5240.

[30]  Jacek K. Furdyna,et al.  Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field , 2008, 0812.3160.

[31]  C. T. Foxon,et al.  Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs , 2013, Nature Communications.

[32]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[33]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[34]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[35]  P. Kužel,et al.  High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  J. Wunderlich,et al.  Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields , 2016, 1604.05918.

[37]  T. Jungwirth,et al.  Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet , 2016, Nature Photonics.

[38]  S. Auffret,et al.  Ultrafast magnetization switching by spin-orbit torques , 2013, 1310.5586.