Terahertz electrical writing speed in an antiferromagnetic memory
暂无分享,去创建一个
Tobias Kampfrath | Pietro Gambardella | Petr Kužel | Petr Němec | Manuel Baumgartner | Vít Novák | Jairo Sinova | Joerg Wunderlich | Tom Seifert | P. Kužel | J. Sinova | J. Wunderlich | T. Jungwirth | R. Campion | P. Němec | K. Olejník | V. Novák | T. Kampfrath | P. Gambardella | P. Wadley | M. Baumgartner | T. Seifert | Tomas Jungwirth | Kamil Olejník | Zdeněk Kašpar | Peter Wadley | Richard P. Campion | Melanie Müller | Z. Kašpar | Melanie Müller
[1] Tobias Kampfrath,et al. Nonlinear spin control by terahertz-driven anisotropy fields , 2016, Nature Photonics.
[2] T. Jungwirth,et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe , 2015, Nature Communications.
[3] Eric E. Fullerton,et al. Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy , 2010 .
[4] F. Freimuth,et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets , 2016, 1604.07590.
[5] S. Bandiera,et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.
[6] T. Kampfrath,et al. Terahertz-field-induced optical birefringence in common window and substrate materials. , 2015, Optics express.
[7] Peter Uhd Jepsen,et al. Non-resonant terahertz field enhancement in periodically arranged nanoslits , 2012 .
[8] Mehdi Baradaran Tahoori,et al. Ultra-Fast and High-Reliability SOT-MRAM: From Cache Replacement to Normally-Off Computing , 2016, IEEE Transactions on Multi-Scale Computing Systems.
[9] K. Tanaka,et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 and applications to nonlinear optics , 2011, Other Conferences.
[10] Jörg Raabe,et al. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. , 2017, Nature nanotechnology.
[11] D. Ralph,et al. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.
[12] Andrew D Kent,et al. A new spin on magnetic memories. , 2015, Nature nanotechnology.
[13] H. Ohno,et al. Current-induced torques in magnetic materials. , 2012, Nature materials.
[14] Alfred Leitenstorfer,et al. Coherent terahertz control of antiferromagnetic spin waves , 2011 .
[15] H. Ohno,et al. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.
[16] M. Mitchell Waldrop,et al. The chips are down for Moore’s law , 2016, Nature.
[17] Masashi Yamaguchi,et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap” , 2008 .
[18] J. Kuhl,et al. Velocity matching by pulse front tilting for large area THz-pulse generation. , 2002, Optics express.
[19] T. Jungwirth,et al. Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs. , 2016, Physical review letters.
[20] C. Kittel. Theory of Antiferromagnetic Resonance , 1951 .
[21] G. Schatz,et al. Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. , 2010, 1008.2490.
[22] J. Wunderlich,et al. Current polarity-dependent manipulation of antiferromagnetic domains , 2017, Nature Nanotechnology.
[23] J. Sinova,et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. , 2014, Physical review letters.
[24] P. Kužel,et al. Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy. , 2010, Optics express.
[25] I. Turek,et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.
[26] T. Jungwirth,et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility , 2017, Nature Communications.
[27] D. Ralph,et al. Spin transfer torques , 2007, 0711.4608.
[28] Christopher Marrows,et al. Addressing an antiferromagnetic memory , 2016, Science.
[29] S. Mangin,et al. Spin-transfer pulse switching: From the dynamic to the thermally activated regime , 2010, 1009.5240.
[30] Jacek K. Furdyna,et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field , 2008, 0812.3160.
[31] C. T. Foxon,et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs , 2013, Nature Communications.
[32] J. Wunderlich,et al. Antiferromagnetic spintronics. , 2015, Nature nanotechnology.
[33] A. Rushforth,et al. Electrical switching of an antiferromagnet , 2015, Science.
[34] A. Fert,et al. The emergence of spin electronics in data storage. , 2007, Nature materials.
[35] P. Kužel,et al. High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[36] J. Wunderlich,et al. Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields , 2016, 1604.05918.
[37] T. Jungwirth,et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet , 2016, Nature Photonics.
[38] S. Auffret,et al. Ultrafast magnetization switching by spin-orbit torques , 2013, 1310.5586.