Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation

MOTIVATION The simulation of biochemical kinetic systems is a powerful approach that can be used for: (i) checking the consistency of a postulated model with a set of experimental measurements, (ii) answering 'what if?' questions and (iii) exploring possible behaviours of a model. Here we describe a generic approach to combine numerical optimization methods with biochemical kinetic simulations, which is suitable for use in the rational design of improved metabolic pathways with industrial significance (metabolic engineering) and for solving the inverse problem of metabolic pathways, i.e. the estimation of parameters from measured variables. RESULTS We discuss the suitability of various optimization methods, focusing especially on their ability or otherwise to find global optima. We recommend that a suite of diverse optimization methods should be available in simulation software as no single one performs best for all problems. We describe how we have implemented such a simulation-optimization strategy in the biochemical kinetics simulator Gepasi and present examples of its application. AVAILABILITY The new version of Gepasi (3.20), incorporating the methodology described here, is available on the Internet at http://gepasi.dbs.aber.ac.uk/softw/Gepasi. html. CONTACT prm@aber.ac.uk

[1]  David B. Fogel,et al.  Toward a New Philosophy of Machine Intelligence , 2000 .

[2]  F Baganz,et al.  Systematic functional analysis of the yeast genome. , 1998, Trends in biotechnology.

[3]  William R. Esposito,et al.  Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach , 1998 .

[4]  Ruedi Aebersold,et al.  High throughput protein characterization by automated reverse‐phase chromatography/electrospray tandem mass spectrometry , 1998, Protein science : a publication of the Protein Society.

[5]  M. Kanehisa,et al.  Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. , 1998, Genome research.

[6]  F. Arnold,et al.  Directed evolution of enzyme catalysts. , 1997, Trends in biotechnology.

[7]  L. Wodicka,et al.  Genome-wide expression monitoring in Saccharomyces cerevisiae , 1997, Nature Biotechnology.

[8]  R. Overbeek,et al.  A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. , 1997, Gene.

[9]  E. Voit,et al.  An indirect optimization method for biochemical systems: description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae. , 1997, Biotechnology and bioengineering.

[10]  P Mendes,et al.  Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. , 1997, Trends in biochemical sciences.

[11]  J. H. Hofmeyr,et al.  The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models , 1997, Comput. Appl. Biosci..

[12]  Jacob Barhen,et al.  TRUST: A deterministic algorithm for global optimization , 1997 .

[13]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[14]  F. Chaplen,et al.  Developments in metabolic engineering. , 1997, Current opinion in biotechnology.

[15]  D Kell,et al.  Making cells work--metabolic engineering for everyone. , 1997, Trends in biotechnology.

[16]  M. Fitzgerald,et al.  Mass spectrometry as a readout of protein structure and function. , 1997, Mass spectrometry reviews.

[17]  R Heinrich,et al.  Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints. , 1997, European journal of biochemistry.

[18]  D. Kell,et al.  What bio technologists knew all along...? , 1996, Journal of theoretical biology.

[19]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[20]  Peter D. Karp,et al.  HinCyc: A Knowledge Base of the Complete Genome and Metabolic Pathways of H. influenzae , 1996, ISMB.

[21]  P. Kuzmič,et al.  Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. , 1996, Analytical biochemistry.

[22]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[23]  D. Fell Understanding the Control of Metabolism , 1996 .

[24]  P. Bork,et al.  Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli , 1996, Current Biology.

[25]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[26]  J. Hofmeyr,et al.  Strategies for Manipulating Metabolic Fluxes in Biotechnology , 1995 .

[27]  Douglas B. Kell,et al.  GMP — good modelling practice: an essential component of good manufacturing practice , 1995 .

[28]  J. Ross,et al.  Genetic-algorithm selection of a regulatory structure that directs flux in a simple metabolic model. , 1995, Biophysical journal.

[29]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[30]  H. Kacser,et al.  The control of flux. , 1995, Biochemical Society transactions.

[31]  M. Ehlde,et al.  MIST: a user-friendly metabolic simulator , 1995, Comput. Appl. Biosci..

[32]  R Heinrich,et al.  Evolutionary optimization of enzyme kinetic parameters; effect of constraints. , 1994, Journal of theoretical biology.

[33]  S Lay,et al.  Computer simulated evolution of a network of cell-signaling molecules. , 1994, Biophysical journal.

[34]  Elizabeth Eskow,et al.  Algorithm 738: a software package for unconstrained optimization using tensor methods , 1990, TOMS.

[35]  C. G. Hocker,et al.  Applying bifurcation theory to enzyme kinetics. , 1994, Methods in enzymology.

[36]  Pedro Mendes,et al.  GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems , 1993, Comput. Appl. Biosci..

[37]  H M Sauro,et al.  SCAMP: a general-purpose simulator and metabolic control analysis program , 1993, Comput. Appl. Biosci..

[38]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[39]  C Frieden,et al.  Numerical integration of rate equations by computer. , 1993, Trends in biochemical sciences.

[40]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[41]  D. C. Cameron,et al.  Cellular and metabolic engineering , 1993, Applied biochemistry and biotechnology.

[42]  M L Johnson,et al.  Why, when, and how biochemists should use least squares. , 1992, Analytical biochemistry.

[43]  D. Fell Metabolic control analysis: a survey of its theoretical and experimental development. , 1992, The Biochemical journal.

[44]  B. Palsson,et al.  Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. , 1992, Journal of theoretical biology.

[45]  M L Johnson,et al.  Analysis of residuals: criteria for determining goodness-of-fit. , 1992, Methods in enzymology.

[46]  J M Beechem,et al.  Global analysis of biochemical and biophysical data. , 1992, Methods in enzymology.

[47]  M L Johnson,et al.  Parameter estimation by least-squares methods. , 1992, Methods in enzymology.

[48]  R. Cotter,et al.  Mass Spectrometry , 1992, Bio/Technology.

[49]  David B. Fogel,et al.  Meta-evolutionary programming , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[50]  R. Heinrich,et al.  Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks , 1991 .

[51]  S. Schuster,et al.  Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks , 1991, Journal of mathematical biology.

[52]  J. H. Hofmeyr,et al.  MetaModel: a program for modelling and control analysis of metabolic pathways on the IBM PC and compatibles , 1991, Comput. Appl. Biosci..

[53]  S. I. Feldman,et al.  A Fortran to C converter , 1990, FORF.

[54]  J E Bailey,et al.  Strategies and Challenges in Metabolic Engineering a , 1990, Annals of the New York Academy of Sciences.

[55]  J. Bailey,et al.  Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae , 1990 .

[56]  Alfredo Colosimo,et al.  SIMFIT: a microcomputer software-toolkit for modelistic studies in biochemistry , 1990, Comput. Appl. Biosci..

[57]  E Friedman,et al.  Loose ends. , 2020, The Healthcare Forum journal.

[58]  P. Skatrud,et al.  Use of Recombinant DNA to Improve Production of Cephalosporin C By Cephalosporium acremonium , 1989, Bio/Technology.

[59]  R. Fletcher Practical Methods of Optimization , 1988 .

[60]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[61]  S. Schuster,et al.  Time hierarchy in enzymatic reaction chains resulting from optimality principles. , 1987, Journal of theoretical biology.

[62]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[63]  R Heinrich,et al.  A theoretical approach to the evolution and structural design of enzymatic networks: linear enzymatic chains, branched pathways and glycolysis of erythrocytes. , 1987, Bulletin of mathematical biology.

[64]  Douglas B. Kell,et al.  Towards a rational approach to the optimization of flux in microbial biotransformations , 1986 .

[65]  J. H. Hofmeyr,et al.  Steady-state modelling of metabolic pathways: a guide for the prospective simulator , 1986, Comput. Appl. Biosci..

[66]  林 勝哉,et al.  Dynamic analysis of enzyme systems : an introduction , 1986 .

[67]  R. Duggleby Estimation of the initial velocity of enzyme-catalysed reactions by non-linear regression analysis of progress curves. , 1985, The Biochemical journal.

[68]  S. Nash Newton-Type Minimization via the Lanczos Method , 1984 .

[69]  R G Duggleby,et al.  Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. , 1984, Computers in biology and medicine.

[70]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[71]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[72]  David Garfinkel,et al.  Computer modeling of metabolic pathways , 1981 .

[73]  B Hess,et al.  Analysis of progress curves. Rate law of pyruvate kinase type I from Escherichia coli. , 1980, The Biochemical journal.

[74]  W. Cleland,et al.  Statistical analysis of enzyme kinetic data. , 2006, Methods in enzymology.

[75]  R. Zahler Enzyme Structure and Mechanism , 1979, The Yale Journal of Biology and Medicine.

[76]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[77]  R Heinrich,et al.  Metabolic regulation and mathematical models. , 1977, Progress in biophysics and molecular biology.

[78]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[79]  Reinhart Heinrich,et al.  A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. , 1974, European journal of biochemistry.

[80]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[81]  Benno Hess,et al.  Analysis and simulation of biochemical systems , 1972 .

[82]  D Garfinkel,et al.  Computer applications to biochemical kinetics. , 1970, Annual review of biochemistry.

[83]  M. R. KIBBY,et al.  Stochastic Method for the Simulation of Biochemical Systems on a Digital Computer , 1969, Nature.

[84]  S. Goldfeld,et al.  Maximization by Quadratic Hill-Climbing , 1966 .

[85]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[86]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[87]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[88]  W. Cleland The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. , 1963, Biochimica et biophysica acta.

[89]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[90]  EDWIN C. Webb The Enzymes , 1961, Nature.

[91]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .