Evaluation of genetic diversity and management of disease in Border Collie dogs

[1]  J. Ha,et al.  Genetic diversity and population structure of the Sapsaree, a native Korean dog breed , 2019, BMC Genetics.

[2]  V. Ács,et al.  Population Structure Analysis of the Border Collie Dog Breed in Hungary , 2019, Animals : an open access journal from MDPI.

[3]  G. Johnson,et al.  A mixed breed dog with neuronal ceroid lipofuscinosis is homozygous for a CLN5 nonsense mutation previously identified in Border Collies and Australian Cattle Dogs. , 2019, Molecular genetics and metabolism.

[4]  F. Biscarini,et al.  Genomic characterization of the Braque Français type Pyrénées dog and relationship with other breeds , 2018, PloS one.

[5]  Aaron J. Sams,et al.  Fine-Scale Resolution of Runs of Homozygosity Reveal Patterns of Inbreeding and Substantial Overlap with Recessive Disease Genotypes in Domestic Dogs , 2018, G3: Genes, Genomes, Genetics.

[6]  L. Laikre,et al.  Pedigree data indicate rapid inbreeding and loss of genetic diversity within populations of native, traditional dog breeds of conservation concern , 2018, PloS one.

[7]  B. Browning,et al.  A one penny imputed genome from next generation reference panels , 2018, bioRxiv.

[8]  A. Espenes,et al.  Neuronal ceroid lipofuscinosis in Salukis is caused by a single base pair insertion in CLN8 , 2018, Animal genetics.

[9]  F. Biscarini,et al.  Genome-wide diversity and runs of homozygosity in the “Braque Français, type Pyrénées” dog breed , 2018, BMC Research Notes.

[10]  M. Katz,et al.  Canine neuronal ceroid lipofuscinoses: Promising models for preclinical testing of therapeutic interventions , 2017, Neurobiology of Disease.

[11]  E. Ostrander,et al.  Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern Dog Breed Development. , 2017, Cell reports.

[12]  Adam Auton,et al.  A Pedigree-Based Map of Recombination in the Domestic Dog Genome , 2016, G3: Genes, Genomes, Genetics.

[13]  K. Mizukami,et al.  Molecular prevalence of multiple genetic disorders in Border collies in Japan and recommendations for genetic counselling. , 2016, Veterinary journal.

[14]  G. Johnson,et al.  Australian Cattle Dogs with Neuronal Ceroid Lipofuscinosis are Homozygous for a CLN5 Nonsense Mutation Previously Identified in Border Collies , 2016, Journal of veterinary internal medicine.

[15]  L. François,et al.  Half of 23 Belgian dog breeds has a compromised genetic diversity, as revealed by genealogical and molecular data analysis. , 2016, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[16]  P. Williamson,et al.  Comparative Analysis of Genome Diversity in Bullmastiff Dogs , 2016, PloS one.

[17]  Christian X. Weichenberger,et al.  FamAgg: an R package to evaluate familial aggregation of traits in large pedigrees , 2016, Bioinform..

[18]  K. Zenger,et al.  netview p: a network visualization tool to unravel complex population structure using genome‐wide SNPs , 2016, Molecular ecology resources.

[19]  S. Blott,et al.  Trends in genetic diversity for all Kennel Club registered pedigree dog breeds , 2015, Canine Genetics and Epidemiology.

[20]  M. Calus,et al.  Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds , 2015, BMC Genetics.

[21]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[22]  Terry M Therneau,et al.  The kinship2 R Package for Pedigree Data , 2014, Human Heredity.

[23]  Seong-Kyoon Choi,et al.  Molecular Genetic Diversity of the Gyeongju Donggyeong Dog in Korea , 2014, The Journal of veterinary medical science.

[24]  G. M. Macbeth,et al.  NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data , 2014, Molecular ecology resources.

[25]  R. Ogden,et al.  Population structure and genetic heterogeneity in popular dog breeds in the UK. , 2013, Veterinary journal.

[26]  R. Wellmann,et al.  Optimum contribution selection for conserved populations with historic migration , 2012, Genetics Selection Evolution.

[27]  Mehar S. Khatkar,et al.  NetView: A High-Definition Network-Visualization Approach to Detect Fine-Scale Population Structures from Genome-Wide Patterns of Variation , 2012, PloS one.

[28]  K. Mizukami,et al.  Neuronal Ceroid Lipofuscinosis in Border Collie Dogs in Japan: Clinical and Molecular Epidemiological Study (2000–2011) , 2012, TheScientificWorldJournal.

[29]  Ivan Biaggio,et al.  1,1‐Dicyano‐4‐[4‐(diethylamino)phenyl]buta‐1,3‐dienes: Structure–Property Relationships , 2012 .

[30]  Ismo Strandén,et al.  A Comparison of Approaches to Estimate the Inbreeding Coefficient and Pairwise Relatedness Using Genomic and Pedigree Data in a Sheep Population , 2011, PloS one.

[31]  K. Lindblad-Toh,et al.  Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping , 2011, PLoS genetics.

[32]  C. Wade,et al.  A genealogical survey of Australian registered dog breeds. , 2011, Veterinary journal.

[33]  G. Leroy Genetic diversity, inbreeding and breeding practices in dogs: results from pedigree analyses. , 2011, Veterinary journal.

[34]  A. Wilton,et al.  A canine model of Cohen syndrome: Trapped Neutrophil Syndrome , 2011, BMC Genomics.

[35]  M. Valera,et al.  Estimation of effective population size from the rate of coancestry in pedigreed populations. , 2011, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[36]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[37]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[38]  Agus Salim,et al.  Identification of recurrent regions of copy-number variants across multiple individuals , 2010, BMC Bioinformatics.

[39]  P. McGreevy,et al.  Inherited defects in pedigree dogs. Part 1: disorders related to breed standards. , 2009, Veterinary journal.

[40]  L. Hesson,et al.  RASSF2 associates with and stabilizes the proapoptotic kinase MST2 , 2009, Oncogene.

[41]  F. Goyache,et al.  Improving the estimation of realized effective population sizes in farm animals. , 2009, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[42]  J. Steven Leeder,et al.  Platform dependence of inference on gene-wise and gene-set involvement in human lung development , 2009, BMC Bioinformatics.

[43]  G. Leroy,et al.  Genetic diversity of dog breeds: between-breed diversity, breed assignation and conservation approaches. , 2009, Animal genetics.

[44]  G. Leroy,et al.  Genetic diversity of dog breeds: within-breed diversity comparing genealogical and molecular data. , 2009, Animal genetics.

[45]  E. López de Maturana,et al.  Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. , 2007, Journal of dairy science.

[46]  Joseph T. Glessner,et al.  PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. , 2007, Genome research.

[47]  A. Wilton,et al.  Elimination of neutrophil elastase and the genes for [corrected] adaptor protein complex 3 subunits [corrected] as the cause of trapped neutrophil syndrome in Border collies. , 2007, Animal genetics.

[48]  A. Wilton,et al.  A mutation in canine CLN5 causes neuronal ceroid lipofuscinosis in Border collie dogs. , 2005, Genomics.

[49]  Walter Kolch,et al.  Role of the Kinase MST2 in Suppression of Apoptosis by the Proto-Oncogene Product Raf-1 , 2004, Science.

[50]  T. Südhof,et al.  Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. , 2003, Genomics.

[51]  P. Landry,et al.  Deriving evolutionary relationships among populations using microsatellites and (deltamu)(2): all loci are equal, but some are more equal than others... , 2002, Genetics.

[52]  T. Shibasaki,et al.  Critical Role of cAMP-GEFII·Rim2 Complex in Incretin-potentiated Insulin Secretion* , 2001, The Journal of Biological Chemistry.

[53]  D. Boichard,et al.  The value of using probabilities of gene origin to measure genetic variability in a population , 1997, Genetics Selection Evolution.

[54]  C. Mellersh,et al.  Variability of canine microsatellites within and between different dog breeds , 1997, Mammalian Genome.

[55]  K. Thompson,et al.  Neutropenia with a probable hereditary basis in Border Collies. , 1996, New Zealand veterinary journal.

[56]  J. Patterson,et al.  Canine ceroid‐lipofuscinoses: A review and classification , 1994 .

[57]  J. Weber,et al.  Mutation of human short tandem repeats. , 1993, Human molecular genetics.

[58]  R. Taylor,et al.  Ceroid lipofuscinosis in the border collie dog: retinal lesions in an animal model of juvenile Batten disease. , 1992, American journal of medical genetics.

[59]  J. Maccluer,et al.  Inbreeding and pedigree structure in Standardbred horses , 1983 .

[60]  G. Leroy,et al.  Inbreeding impact on litter size and survival in selected canine breeds. , 2015, Veterinary journal.

[61]  R. Taylor,et al.  Ceroid-lipofuscinosis in Border Collie dogs , 2004, Acta Neuropathologica.

[62]  S. S. Hughes,et al.  Analysis of genetic variation in 28 dog breed populations with 100 microsatellite markers. , 2003, The Journal of heredity.

[63]  D. Boichard,et al.  Pedig: a Fortran package for pedigree analysis suited for large populations. , 2002 .

[64]  I. Zajc,et al.  Utility of canine microsatellites in revealing the relationships of pure bred dogs. , 1999, The Journal of heredity.