The law of the iterated logarithm and maximal smoothing principle for the kernel distribution function estimator
暂无分享,去创建一个
[1] M. Falk. Relative efficiency and deficiency of kernel type estimators of smooth distribution functions , 1983 .
[2] B. B. Winter. Strong uniform consistency of integrals of density estimators , 1973 .
[3] Zhezhen Jin,et al. On kernel estimation of a multivariate distribution function , 1999 .
[4] G. Terrell. The Maximal Smoothing Principle in Density Estimation , 1990 .
[5] Integrated squared error of kernel-type estimator of distribution function , 1992 .
[6] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[7] Rolf-Dieter Reiss,et al. Nonparametric Estimation of Smooth Distribution Functions , 2016 .
[8] B. B. Winter. Convergence rate of perturbed empirical distribution functions , 1979 .
[9] Note on the minimum mean integrated squared error of kernel estimates of a distribution function and its derivatives , 1993 .
[10] Nathaniel Schenker,et al. Qualms about Bootstrap Confidence Intervals , 1985 .
[11] B. Efron. Better Bootstrap Confidence Intervals , 1987 .
[12] R. Nickl,et al. An exponential inequality for the distribution function of the kernel density estimator, with applications to adaptive estimation , 2009 .
[13] Alan M. Polansky,et al. Multistage plug—in bandwidth selection for kernel distribution function estimates , 2000 .
[14] M. R. Leadbetter,et al. HAZARD ANALYSIS II , 1964 .
[15] S. Brendle,et al. Calculus of Variations , 1927, Nature.
[16] M. C. Jones. The performance of kernel density functions in kernel distribution function estimation , 1990 .
[17] J. Yukich. A note on limit theorems for perturbed empirical processes , 1989 .
[18] T. Gasser,et al. Nonparametric estimates of distribution functions , 1983 .
[19] E. Nadaraya,et al. Some New Estimates for Distribution Functions , 1964 .
[20] Hajime Yamato,et al. UNIFORM CONVERGENCE OF AN ESTIMATOR OF A DISTRIBUTION FUNCTION , 1973 .
[21] A. Azzalini. A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .
[22] Helen Finkelstein. The Law of the Iterated Logarithm for Empirical Distribution , 1971 .
[23] A. Polansky. Bandwidth selection for the smoothed bootstrap percentile method , 2001 .
[24] Jan W. H. Swanepoel,et al. A general result on the uniform in bandwidth consistency of kernel-type function estimators , 2011 .
[25] James Stephen Marron,et al. Estimation of integrated squared density derivatives , 1987 .
[26] D. W. Scott,et al. Biased and Unbiased Cross-Validation in Density Estimation , 1987 .
[27] Jiří Zelinka,et al. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing , 2012 .
[28] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[29] On the asymptotic behaviour of the ISE for automatic kernel distribution estimators , 2003 .
[30] David W. Scott,et al. Frequency Polygons: Theory and Application , 1985 .
[31] Lijian Yang,et al. Kernel estimation of multivariate cumulative distribution function , 2008 .
[32] D. Peter,et al. Kernel estimation of a distribution function , 1985 .
[33] P. Sarda. Smoothing parameter selection for smooth distribution functions , 1993 .
[34] Naomi S. Altman,et al. Bandwidth selection for kernel distribution function estimation , 1995 .
[35] P. Hall,et al. Bandwidth selection for the smoothing of distribution functions , 1998 .
[36] Kernel Smoothing to Improve Bootstrap Confidence Intervals , 1997 .
[37] J. Swanepoel. Mean intergrated squared error properties and optimal kernels when estimating a diatribution function , 1988 .
[38] Carlos Tenreiro,et al. Asymptotic behaviour of multistage plug-in bandwidth selections for kernel distribution function estimators , 2006 .