Construction and implementation of asymptotic expansions for Jacobi–type orthogonal polynomials
暂无分享,去创建一个
[1] A. S. Fokas,et al. The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .
[2] W. Van Assche,et al. The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .
[3] I. BOGAERT,et al. O(1) Computation of Legendre Polynomials and Gauss-Legendre Nodes and Weights for Parallel Computing , 2012, SIAM J. Sci. Comput..
[4] Tom H. Koornwinder,et al. On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .
[5] R. W. Gosper. Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.
[6] T. Trogdon,et al. Numerical Solution of Riemann–Hilbert Problems: Random Matrix Theory and Orthogonal Polynomials , 2012, 1210.2199.
[7] T. Trogdon,et al. A Riemann–Hilbert approach to Jacobi operators and Gaussian quadrature , 2013, 1311.5838.
[8] Daan Huybrechs,et al. On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..
[9] Sheehan Olver,et al. A general framework for solving Riemann–Hilbert problems numerically , 2012, Numerische Mathematik.
[10] Ignace Bogaert,et al. Iteration-Free Computation of Gauss-Legendre Quadrature Nodes and Weights , 2014, SIAM J. Sci. Comput..
[11] Nicholas Hale,et al. Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights , 2013, SIAM J. Sci. Comput..
[12] Folkmar Bornemann,et al. Accuracy and Stability of Computing High-order Derivatives of Analytic Functions by Cauchy Integrals , 2009, Found. Comput. Math..
[13] A. Martínez-Finkelshtein,et al. Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .
[14] James Bremer,et al. On the Numerical Calculation of the Roots of Special Functions Satisfying Second Order Ordinary Differential Equations , 2015, SIAM J. Sci. Comput..
[15] Christof Bosbach,et al. Strong asymptotics for Laguerre polynomials with varying weights , 1998 .
[16] Nicholas Hale,et al. A Fast, Simple, and Stable Chebyshev-Legendre Transform Using an Asymptotic Formula , 2014, SIAM J. Sci. Comput..
[17] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[18] Sheehan Olver,et al. A Fast and Well-Conditioned Spectral Method , 2012, SIAM Rev..
[19] A.B.J. Kuijlaars,et al. Orthogonality of Jacobi polynomials with general parameters , 2003 .
[20] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[21] Dan Dai,et al. Asymptotics of the partition function of a Laguerre-type random matrix model , 2014, J. Approx. Theory.
[22] Anne Gelb,et al. Robust reprojection methods for the resolution of the Gibbs phenomenon , 2006 .
[23] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[24] Nico M. Temme,et al. Efficient computation of Laguerre polynomials , 2016, Comput. Phys. Commun..
[25] Edmundo J. Huertas,et al. Strong and ratio asymptotics for Laguerre polynomials revisited , 2013, 1301.4266.
[26] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[27] T. Trogdon,et al. Nonlinear Steepest Descent and Numerical Solution of Riemann‐Hilbert Problems , 2012, 1205.5604.
[28] M. Plancherel,et al. Sur les valeurs asymptotiques des polynomes d'Hermite $$H_n (x) = ( - I)^n e^{\frac{{x^2 }}{2}} \frac{{d^n }}{{dx^n }}\left( {e^{ - \frac{{x^2 }}{2}} } \right),$$ , 1929 .
[29] Lloyd N. Trefethen,et al. The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..
[30] Andrei Martínez-Finkelshtein,et al. On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials , 2009, J. Approx. Theory.
[31] Nico M. Temme,et al. Asymptotic estimates for Laguerre polynomials , 1990 .
[32] Haiyong Wang,et al. Fast and highly accurate computation of Chebyshev expansion coefficients of analytic functions , 2014, 1404.2463.
[33] G. Rw. Decision procedure for indefinite hypergeometric summation , 1978 .
[34] Alex Townsend,et al. Fast computation of Gauss quadrature nodes and weights on the whole real line , 2014, 1410.5286.
[35] M. Ismail,et al. Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .
[36] Maarten Vanlessen,et al. Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .
[37] Arno B. J. Kuijlaars,et al. Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .
[38] D. Huybrechs. On the Fourier extension of non-periodic functions , 2009 .
[39] N. Temme,et al. Convergent asymptotic expansions of Charlier, Laguerre and Jacobi polynomials , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[40] M. Vanlessen,et al. Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .
[41] T. Trogdon,et al. Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions , 2015 .
[42] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[43] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[44] Vladimir Rokhlin,et al. A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..
[45] Stephanos Venakides,et al. UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .
[46] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.
[47] A. Martínez-Finkelshtein,et al. Asymptotics of Orthogonal Polynomials for a Weight with a Jump on [−1,1] , 2009, 0904.2514.
[48] Yang Chen,et al. Painlevé V and time-dependent Jacobi polynomials , 2009, 0905.2620.