Construction and implementation of asymptotic expansions for Jacobi–type orthogonal polynomials

AbstractWe are interested in the asymptotic behavior of orthogonal polynomials of the generalized Jacobi type as their degree n goes to ∞$\infty $. These are defined on the interval [−1, 1] with weight function w(x)=(1−x)α(1+x)βh(x),α,β>−1$$w(x)=(1-x)^{\alpha}(1+x)^{\beta}h(x), \quad \alpha,\beta>-1 $$ and h(x) a real, analytic and strictly positive function on [−1, 1]. This information is available in the work of Kuijlaars et al. (Adv. Math. 188, 337–398 2004), where the authors use the Riemann–Hilbert formulation and the Deift–Zhou non-linear steepest descent method. We show that computing higher-order terms can be simplified, leading to their efficient construction. The resulting asymptotic expansions in every region of the complex plane are implemented both symbolically and numerically, and the code is made publicly available. The main advantage of these expansions is that they lead to increasing accuracy for increasing degree of the polynomials, at a computational cost that is actually independent of the degree. In contrast, the typical use of the recurrence relation for orthogonal polynomials in computations leads to a cost that is at least linear in the degree. Furthermore, the expansions may be used to compute Gaussian quadrature rules in O(n)$\mathcal {O}(n)$ operations, rather than O(n2)$\mathcal {O}(n^{2})$ based on the recurrence relation.

[1]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[2]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[3]  I. BOGAERT,et al.  O(1) Computation of Legendre Polynomials and Gauss-Legendre Nodes and Weights for Parallel Computing , 2012, SIAM J. Sci. Comput..

[4]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[5]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Trogdon,et al.  Numerical Solution of Riemann–Hilbert Problems: Random Matrix Theory and Orthogonal Polynomials , 2012, 1210.2199.

[7]  T. Trogdon,et al.  A Riemann–Hilbert approach to Jacobi operators and Gaussian quadrature , 2013, 1311.5838.

[8]  Daan Huybrechs,et al.  On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..

[9]  Sheehan Olver,et al.  A general framework for solving Riemann–Hilbert problems numerically , 2012, Numerische Mathematik.

[10]  Ignace Bogaert,et al.  Iteration-Free Computation of Gauss-Legendre Quadrature Nodes and Weights , 2014, SIAM J. Sci. Comput..

[11]  Nicholas Hale,et al.  Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights , 2013, SIAM J. Sci. Comput..

[12]  Folkmar Bornemann,et al.  Accuracy and Stability of Computing High-order Derivatives of Analytic Functions by Cauchy Integrals , 2009, Found. Comput. Math..

[13]  A. Martínez-Finkelshtein,et al.  Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .

[14]  James Bremer,et al.  On the Numerical Calculation of the Roots of Special Functions Satisfying Second Order Ordinary Differential Equations , 2015, SIAM J. Sci. Comput..

[15]  Christof Bosbach,et al.  Strong asymptotics for Laguerre polynomials with varying weights , 1998 .

[16]  Nicholas Hale,et al.  A Fast, Simple, and Stable Chebyshev-Legendre Transform Using an Asymptotic Formula , 2014, SIAM J. Sci. Comput..

[17]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[18]  Sheehan Olver,et al.  A Fast and Well-Conditioned Spectral Method , 2012, SIAM Rev..

[19]  A.B.J. Kuijlaars,et al.  Orthogonality of Jacobi polynomials with general parameters , 2003 .

[20]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[21]  Dan Dai,et al.  Asymptotics of the partition function of a Laguerre-type random matrix model , 2014, J. Approx. Theory.

[22]  Anne Gelb,et al.  Robust reprojection methods for the resolution of the Gibbs phenomenon , 2006 .

[23]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[24]  Nico M. Temme,et al.  Efficient computation of Laguerre polynomials , 2016, Comput. Phys. Commun..

[25]  Edmundo J. Huertas,et al.  Strong and ratio asymptotics for Laguerre polynomials revisited , 2013, 1301.4266.

[26]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[27]  T. Trogdon,et al.  Nonlinear Steepest Descent and Numerical Solution of Riemann‐Hilbert Problems , 2012, 1205.5604.

[28]  M. Plancherel,et al.  Sur les valeurs asymptotiques des polynomes d'Hermite $$H_n (x) = ( - I)^n e^{\frac{{x^2 }}{2}} \frac{{d^n }}{{dx^n }}\left( {e^{ - \frac{{x^2 }}{2}} } \right),$$ , 1929 .

[29]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[30]  Andrei Martínez-Finkelshtein,et al.  On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials , 2009, J. Approx. Theory.

[31]  Nico M. Temme,et al.  Asymptotic estimates for Laguerre polynomials , 1990 .

[32]  Haiyong Wang,et al.  Fast and highly accurate computation of Chebyshev expansion coefficients of analytic functions , 2014, 1404.2463.

[33]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[34]  Alex Townsend,et al.  Fast computation of Gauss quadrature nodes and weights on the whole real line , 2014, 1410.5286.

[35]  M. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .

[36]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .

[37]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[38]  D. Huybrechs On the Fourier extension of non-periodic functions , 2009 .

[39]  N. Temme,et al.  Convergent asymptotic expansions of Charlier, Laguerre and Jacobi polynomials , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[40]  M. Vanlessen,et al.  Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .

[41]  T. Trogdon,et al.  Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions , 2015 .

[42]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[43]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[44]  Vladimir Rokhlin,et al.  A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..

[45]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[46]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[47]  A. Martínez-Finkelshtein,et al.  Asymptotics of Orthogonal Polynomials for a Weight with a Jump on [−1,1] , 2009, 0904.2514.

[48]  Yang Chen,et al.  Painlevé V and time-dependent Jacobi polynomials , 2009, 0905.2620.