Sklar's theorem in an imprecise setting
暂无分享,去创建一个
[1] A. Müller,et al. Comparison Methods for Stochastic Models and Risks , 2002 .
[2] Roger B. Nelsen,et al. Best-possible bounds on sets of bivariate distribution functions , 2004 .
[3] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[4] Marco Scarsini. Copulae of capacities on product spaces , 1996 .
[5] Fabio Gagliardi Cozman,et al. Kuznetsov independence for interval-valued expectations and sets of probability distributions: Properties and algorithms , 2014, Int. J. Approx. Reason..
[6] Susana Montes,et al. Comparison of Random Variables Coupled by Archimedean Copulas , 2010, SMPS.
[7] Diego A. Alvarez,et al. A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type , 2009, Fuzzy Sets Syst..
[8] Fabrizio Durante,et al. Semi-copulas, capacities and families of level sets , 2010, Fuzzy Sets Syst..
[9] Susana Montes,et al. Decision making with imprecise probabilities and utilities by means of statistical preference and stochastic dominance , 2014, Eur. J. Oper. Res..
[10] M. Fréchet. Généralisation du théorème des probabilités totales , 1935 .
[11] B. De Baets,et al. Cycle-transitive comparison of independent random variables , 2005 .
[12] Scott Ferson,et al. Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .
[13] D. Bunn. Stochastic Dominance , 1979 .
[14] Bernhard Schmelzer. Joint distributions of random sets and their relation to copulas , 2015, Int. J. Approx. Reason..
[15] Bernard De Baets,et al. A Fuzzy Approach to Stochastic Dominance of Random Variables , 2003, IFSA.
[16] Roger B. Nelsen,et al. The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas , 2005 .
[17] B. De Baets,et al. On the Cycle-Transitivity of the Dice Model , 2003 .
[18] Gert de Cooman,et al. Independent natural extension , 2010, Artif. Intell..
[19] Enrique Miranda,et al. Bivariate p-boxes , 2016, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[20] Ronald R. Yager,et al. Joint cumulative distribution functions for Dempster–Shafer belief structures using copulas , 2013, Fuzzy Optim. Decis. Mak..
[21] R. Nelsen. An Introduction to Copulas , 1998 .
[22] Moshe Shaked,et al. Stochastic orders and their applications , 1994 .
[23] P. Walley,et al. A survey of concepts of independence for imprecise probabilities , 2000 .
[24] P. Walley. Statistical Reasoning with Imprecise Probabilities , 1990 .
[25] Susana Montes,et al. Statistical Preference as a Tool in Consensus Processes , 2011, Consensual Processes.
[26] Didier Dubois,et al. Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach , 2003, Artif. Intell..
[27] Sébastien Destercke,et al. Probability boxes on totally preordered spaces for multivariate modelling , 2011, Int. J. Approx. Reason..
[28] Susana Montes,et al. Stochastic dominance with imprecise information , 2014, Comput. Stat. Data Anal..