Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions

[1]  Kenric Leung,et al.  The Life History of 21 Breast Cancers , 2015, Cell.

[2]  M. Troxell,et al.  Frequent PIK3CA Mutations in Radial Scars , 2013, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[3]  M. Troxell,et al.  PIK3CA-AKT pathway mutations in micropapillary breast carcinoma. , 2013, Human pathology.

[4]  A. González-Angulo,et al.  Defining biomarkers to predict sensitivity to PI3K/Akt/mTOR pathway inhibitors in breast cancer. , 2013, Cancer treatment reviews.

[5]  M. Troxell,et al.  Novel method for PIK3CA mutation analysis: locked nucleic acid--PCR sequencing. , 2013, The Journal of molecular diagnostics : JMD.

[6]  Serafim Batzoglou,et al.  Genome evolution during progression to breast cancer , 2013, Genome research.

[7]  M. Troxell,et al.  Mucinous breast carcinomas lack PIK3CA and AKT1 mutations. , 2012, Human pathology.

[8]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[9]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[10]  M. Shackleton,et al.  Physiological Levels of Pik3ca H1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors , 2012, PloS one.

[11]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[12]  Joshua F. McMichael,et al.  Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition , 2012, Nature.

[13]  R. West,et al.  Phosphatidylinositol-3-kinase pathway mutations are common in breast columnar cell lesions , 2012, Modern Pathology.

[14]  S. Durinck,et al.  Conditional activation of Pik3caH1047R in a knock-in mouse model promotes mammary tumorigenesis and emergence of mutations , 2012, Oncogene.

[15]  M. Troxell PIK3CA/AKT1 Mutations in Breast Carcinoma: a Comprehensive Review of Experimental and Clinical Studies , 2012 .

[16]  Laura J. Winter,et al.  Multiplex mutation screening by mass spectrometry evaluation of 820 cases from a personalized cancer medicine registry. , 2011, The Journal of molecular diagnostics : JMD.

[17]  G. Mills,et al.  Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and -independent mechanisms , 2011, Nature Medicine.

[18]  A. Heguy,et al.  PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression , 2011, Breast Cancer Research and Treatment.

[19]  Rosette Lidereau,et al.  Gene Expression Profiling Reveals New Aspects of PIK3CA Mutation in ERalpha-Positive Breast Cancer: Major Implication of the Wnt Signaling Pathway , 2010, PloS one.

[20]  Funda Meric-Bernstam,et al.  Deciphering the role of PI3K/Akt/mTOR pathway in breast cancer biology and pathogenesis. , 2010, Clinical breast cancer.

[21]  F. Jin,et al.  Genetic mutations and expression of p53 in non-invasive breast lesions. , 2010, Molecular medicine reports.

[22]  D. Carrasco,et al.  PIK3CA mutations in in situ and invasive breast carcinomas. , 2010, Cancer research.

[23]  T. Speed,et al.  PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in breast cancer , 2010 .

[24]  M. Troxell,et al.  Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma , 2010, Breast Cancer Research and Treatment.

[25]  Yue Chen,et al.  PTEN mutation spectrum in breast cancers and breast hyperplasia , 2010, Journal of Cancer Research and Clinical Oncology.

[26]  Hong Wang,et al.  PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. , 2010, Experimental and molecular pathology.

[27]  W. Gerald,et al.  PIK3CA Mutation Associates with Improved Outcome in Breast Cancer , 2009, Clinical Cancer Research.

[28]  S. Fuqua,et al.  Expression of the K303R estrogen receptor-alpha breast cancer mutation induces resistance to an aromatase inhibitor via addiction to the PI3K/Akt kinase pathway. , 2009, Cancer research.

[29]  Zhi Hu,et al.  An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. , 2008, Cancer research.

[30]  H. Bu,et al.  Evidence of chromosomal alterations in pure usual ductal hyperplasia as a breast carcinoma precursor. , 2008, Oncology reports.

[31]  A. Marchetti,et al.  Different Prognostic Roles of Mutations in the Helical and Kinase Domains of the PIK3CA Gene in Breast Carcinomas , 2007, Clinical Cancer Research.

[32]  M. Knowles Role of FGFR3 in urothelial cell carcinoma: biomarker and potential therapeutic target , 2007, World Journal of Urology.

[33]  M. Knowles,et al.  FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer , 2007, The Journal of pathology.

[34]  Spyro Mousses,et al.  A transforming mutation in the pleckstrin homology domain of AKT1 in cancer , 2007, Nature.

[35]  I. Ellis,et al.  Columnar Cell Lesions of the Breast: The Missing Link in Breast Cancer Progression?: A Morphological and Molecular Analysis , 2005, The American journal of surgical pathology.

[36]  J. Olson,et al.  Estrogen receptor α (ESR1) mutant A908G is not a common feature in benign and malignant proliferations of the breast , 2004, Genes, chromosomes & cancer.

[37]  S. Lakhani,et al.  The diagnosis and management of pre-invasive breast disease: Genetic alterations in pre-invasive lesions , 2003, Breast Cancer Research.

[38]  A. Vincent-Salomon,et al.  Columnar Cell Lesions of the Breast , 2003, Advances in anatomic pathology.

[39]  S. Lakhani,et al.  Comparative genomic hybridization analysis of bilateral hyperplasia of usual type of the breast , 2003, The Journal of pathology.

[40]  S. Devries,et al.  Genetic changes in paired atypical and usual ductal hyperplasia of the breast by comparative genomic hybridization. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[41]  S. Hilsenbeck,et al.  A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. , 2000, Cancer research.

[42]  H. Ozçelik,et al.  p53 protein accumulation and mutations in normal and benign breast tissue , 2000, International journal of cancer.

[43]  S. Lakhani The transition from hyperplasia to invasive carcinoma of the breast , 1999, The Journal of pathology.

[44]  P. O’Connell,et al.  Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. , 1998, Journal of the National Cancer Institute.

[45]  I. Andrulis,et al.  p53 mutations in mammary ductal carcinoma in situ but not in epithelial hyperplasias. , 1998, Cancer research.

[46]  R. Millikan,et al.  p53 mutations in benign breast tissue. , 1995, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[47]  S J Schnitt,et al.  Interobserver Reproducibility in the Diagnosis of Ductal Proliferative Breast Lesions Using Standardized Criteria , 1992, The American journal of surgical pathology.

[48]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[49]  Sunil R. Lakhani,et al.  WHO classification of tumours of the breast , 2012 .

[50]  Janice Patterson,et al.  High prevalence of PIK3CA/AKT pathway mutations in papillary neoplasms of the breast , 2010, Modern Pathology.

[51]  Ruan Qiu-ron Intraductal proliferative lesions of the breast: a clinicopathologic analysis , 2006 .

[52]  T. Toyama,et al.  Estrogen receptor α mutation (A-to-G transition at nucleotide 908) is not found in different types of breast lesions from japanese women , 2003, Breast cancer.

[53]  M. Stratton,et al.  Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. , 1996, Laboratory investigation; a journal of technical methods and pathology.