ICT Innovations 2018. Engineering and Life Sciences

of Keynotes The Future of Brain Imaging

[1]  Marjan Gusev,et al.  ECGalert: A Heart Attack Alerting System , 2017, ICT Innovations.

[2]  G. Meyer,et al.  Verification of color vegetation indices for automated crop imaging applications , 2008 .

[3]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[4]  Willis J. Tompkins,et al.  Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database , 1986, IEEE Transactions on Biomedical Engineering.

[5]  David Schimmelpfennig,et al.  Farm Profits and Adoption of Precision Agriculture , 2016 .

[6]  Matthias Rothmund,et al.  Precision agriculture on grassland : Applications, perspectives and constraints , 2008 .

[7]  F. López-Granados,et al.  Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images , 2013, PloS one.

[8]  Marjan Gusev,et al.  Amplitude Rescaling Influence on QRS Detection , 2018, ICT Innovations.

[9]  Armando Apan,et al.  Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield , 2016 .

[10]  Eftim Zdravevski,et al.  Weed Segmentation from Grayscale Tobacco Seedling Images , 2016, RAAD.

[11]  Francisca López Granados Weed detection for site-specific weed management: Mapping and real-time approaches , 2011 .

[12]  M. Loghavi,et al.  Development of a target oriented weed control system , 2008 .

[13]  G.B. Moody,et al.  The impact of the MIT-BIH Arrhythmia Database , 2001, IEEE Engineering in Medicine and Biology Magazine.

[14]  Willis J. Tompkins,et al.  A Real-Time QRS Detection Algorithm , 1985, IEEE Transactions on Biomedical Engineering.

[15]  M. F. Fernández Laespada,et al.  Evaluation of surface- and ground-water pollution due to herbicides in agricultural areas of Zamora and Salamanca (Spain). , 2000, Journal of chromatography. A.

[16]  Alberto Tellaeche,et al.  A computer vision approach for weeds identification through Support Vector Machines , 2011, Appl. Soft Comput..

[17]  Alexander Wendel,et al.  Self-supervised weed detection in vegetable crops using ground based hyperspectral imaging , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Alberto Tellaeche,et al.  A new vision-based approach to differential spraying in precision agriculture , 2008 .

[19]  Juan Agüera,et al.  Autonomous systems for precise spraying – Evaluation of a robotised patch sprayer , 2016 .

[20]  Jessica R. Goldberger,et al.  A Survey of Weed Management in Organic Small Grains and Forage Systems in the Northwest United States , 2016, Weed Science.

[21]  M. Srbinovska,et al.  Environmental parameters monitoring in precision agriculture using wireless sensor networks , 2015 .

[22]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[23]  F. López-Granados,et al.  Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management , 2013, PloS one.

[24]  Joe D. Luck,et al.  Reducing pesticide over-application with map-based automatic boom section control on agricultural sprayers. , 2010 .

[25]  Henrik Skov Midtiby,et al.  Performance evaluation of a crop/weed discriminating microsprayer , 2011 .

[26]  R. Gerhards,et al.  An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management , 2008, Precision Agriculture.

[27]  H. T. Søgaard,et al.  Application Accuracy of a Machine Vision-controlled Robotic Micro-dosing System , 2007 .

[28]  Louis Longchamps,et al.  Spatial Pattern of Weeds Based on Multispecies Infestation Maps Created by Imagery , 2016, Weed Science.

[29]  M. Hauschild,et al.  How to manage uncertainty in future Life Cycle Assessment (LCA) scenarios addressing the effect of climate change in crop production , 2015 .

[30]  G. Berntson,et al.  An approach to artifact identification: application to heart period data. , 1990, Psychophysiology.

[31]  J. Foley,et al.  Yield Trends Are Insufficient to Double Global Crop Production by 2050 , 2013, PloS one.

[32]  L. Tian,et al.  Direct application end effector for a precise weed control robot , 2009 .

[33]  Thomas Rath,et al.  Comparison of vision-based and manual weed mapping in sugar beet , 2007 .

[34]  P. Hamilton,et al.  Open source ECG analysis , 2002, Computers in Cardiology.

[35]  Marjan Gusev,et al.  Analysis of sampling frequency and resolution in ECG signals , 2017, 2017 25th Telecommunication Forum (TELFOR).

[36]  H. Beckie,et al.  The future for weed control and technology. , 2014, Pest management science.

[37]  Paolo Rosso,et al.  Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not , 2016, Knowl. Based Syst..

[38]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[39]  Antoine Messéan,et al.  Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. , 2016, Plant disease.

[40]  David C. Slaughter,et al.  Autonomous robotic weed control systems: A review , 2008 .

[41]  R. Plant,et al.  Precision agriculture can increase profits and limit environmental impacts , 2000 .

[42]  O. Pahlm,et al.  Software QRS detection in ambulatory monitoring — a review , 1984, Medical and Biological Engineering and Computing.

[43]  N. D. Tillett,et al.  Mechanical within-row weed control for transplanted crops using computer vision , 2008 .

[44]  J. Thayer,et al.  A careful look at ECG sampling frequency and R-peak interpolation on short-term measures of heart rate variability , 2015, Physiological measurement.

[45]  R. Y. van der Weide,et al.  Innovation in mechanical weed control in crop rows , 2008 .

[46]  Daniele Nardi,et al.  Fast and Accurate Crop and Weed Identification with Summarized Train Sets for Precision Agriculture , 2016, IAS.

[47]  L. Plümer,et al.  Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine , 2012 .