U(v) in metal uranates: a combined experimental and theoretical study of MgUO4, CrUO4, and FeUO4.

Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO4, CrUO4 and FeUO4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and (57)Fe-Mössbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U(5+) has been solidly confirmed in CrUO4 and FeUO4, which are thermodynamically stable compounds, and the origin and stability of U(5+) in the system was elaborated by DFT. The structural and thermodynamic behaviour of U(5+) elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal.

[1]  A. Navrotsky,et al.  Formation enthalpies of LaLn'O3 (Ln'¼Ho, Er, Tm and Yb) interlanthanide perovskites , 2015 .

[2]  R. Ewing,et al.  Thermodynamics of formation of coffinite, USiO4 , 2015, Proceedings of the National Academy of Sciences.

[3]  M. Engelhard,et al.  Charge-coupled substituted garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): structure and stability as crystalline nuclear waste forms. , 2015, Inorganic Chemistry.

[4]  Lili Wu,et al.  Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites , 2015 .

[5]  A. Navrotsky,et al.  Energetics of metastudtite and implications for nuclear waste alteration , 2014, Proceedings of the National Academy of Sciences.

[6]  B. Sadigh,et al.  Computational study of the energetics and defect clustering tendencies for Y- and La-doped UO2 , 2014 .

[7]  R. Ewing,et al.  Thermodynamics of thorium substitution in yttrium iron garnet: comparison of experimental and theoretical results , 2014 .

[8]  S. Sutton,et al.  Cerium Substitution in Yttrium Iron Garnet: Valence State, Structure, and Energetics , 2014 .

[9]  Chong-Min Wang,et al.  Pertechnetate (TcO4−) reduction by reactive ferrous iron forms in naturally anoxic, redox transition zone sediments from the Hanford Site, USA , 2012 .

[10]  F. Heinemann,et al.  Oxidation state delineation via U L(III)-edge XANES in a series of isostructural uranium coordination complexes. , 2012, Inorganic chemistry.

[11]  E. Ilton,et al.  XPS determination of uranium oxidation states , 2011 .

[12]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[13]  G. Henkelman,et al.  Hybrid density functional theory band structure engineering in hematite. , 2011, The Journal of chemical physics.

[14]  Niels Grønbech-Jensen,et al.  Computational study of the energetics of charge and cation mixing in U1-xCexO₂ , 2010, 1012.1905.

[15]  S. V. D. Berghe,et al.  XPS spectra of the U5+U5+ compounds KUO3KUO3, NaUO3NaUO3 and Ba2U2O7Ba2U2O7 , 2009 .

[16]  B. Ravel,et al.  Pentavalent uranium oxide via reduction of [UO2]2+ under hydrothermal reaction conditions. , 2008, Inorganic chemistry.

[17]  Emily A Carter,et al.  Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. , 2008, The Journal of chemical physics.

[18]  D. Watson,et al.  Speciation of uranium in sediments before and after in situ biostimulation. , 2008, Environmental science & technology.

[19]  S. V. D. Berghe,et al.  Local structure and oxidation state of uranium in some ternary oxides: X-ray absorption analysis , 2007 .

[20]  G. Ceder,et al.  Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4. , 2006, Physical review letters.

[21]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[22]  A. Navrotsky,et al.  Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates , 2006 .

[23]  Yali Su,et al.  Crystal-chemical and energetic systematics of wadeite-type phases A2BSi3O9 (A = K, Cs; B = Si, Ti, Zr) , 2005 .

[24]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[25]  Yali Su,et al.  Perovskite solid solutions along the NaNbO3-SrTiO3join : Phase transitions, formation enthalpies, and implications for general perovskite energetics , 2005 .

[26]  J. Hafner,et al.  High-pressure characteristics of α-Fe2O3 using DFT+U , 2005 .

[27]  T. Nenoff,et al.  CRYSTAL CHEMISTRY AND ENERGETICS OF PHARMACOSIDERITE-RELATED MICROPOROUS PHASES IN THE K2O-CS2O-SIO2-TIO2-H2O SYSTEM , 2004 .

[28]  J. Cashion,et al.  Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization , 2003 .

[29]  S. V. D. Berghe,et al.  The Local Uranium Environment in Cesium Uranates: A Combined XPS, XAS, XRD, and Neutron Diffraction Analysis , 2002 .

[30]  J. Catalano,et al.  Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U4+0.23U6+0.46Ti1.85O7.00 and Gd-pyrochlore, Gd2Ti2O7: three materials relevant to the proposed waste form for excess weapons plutonium , 2002 .

[31]  T. Nenoff,et al.  Thermochemistry of microporous silicotitanate phases in the Na_2O–Cs_2O–SiO_2–TiO_2–H_2O system , 2000 .

[32]  E. Cordfunke,et al.  The standard enthalpies of formation of uranium compounds. XV. Strontium uranates , 1999 .

[33]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[34]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[35]  A. Navrotsky,et al.  Energetics of Ternary Nitrides: Li−Ca−Zn−N and Ca−Ta−N Systems , 1997 .

[36]  A. Navrotsky Progress and new directions in high temperature calorimetry revisited , 1997 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[41]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[42]  A. Navrotsky,et al.  The behavior of H 2 O and CO 2 in high-temperature lead borate solution calorimetry of volatile-bearing phases , 1994 .

[43]  A. Navrotsky Repeating patterns in mineral energetics , 1994 .

[44]  Derek W. Smith An Acidity Scale for Binary Oxides. , 1987 .

[45]  A. J. Griffiths,et al.  X-ray photoelectron spectroscopy of alkaline earth metal uranate complexes , 1978 .

[46]  A. J. Griffiths,et al.  Electron spin resonance spectra of mixed oxides containing uranium and alkaline earth metals , 1978 .

[47]  J. R. Fisher,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and at higher temperature , 1978 .

[48]  H. Hoekstra,et al.  Thermochemistry of uranium compounds IX. Standard enthalpy of formation and high-temperature thermodynamic functions of magnesium uranate (MgUO4) A comment on the non-existence of beryllium uranate , 1977 .

[49]  A. Navrotsky Progress and new directions in high temperature calorimetry , 1977 .

[50]  H. Hoekstra,et al.  Thermochemistry of uranium compounds VIII. Standard enthalpies of formation at 298.15 K of the uranates of calcium (CaUO4) and barium (BaUO4). Thermodynamics of the behavior of barium in nuclear fuels , 1976 .

[51]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[52]  The stoichiometric magnesium, calcium, strontium and barium monouranates , 1974 .

[53]  R. Hornreich,et al.  Magnetoelectric compounds with two sets of magnetic sublattices: UCrO4 and NdCrTiO5☆ , 1974 .

[54]  D. Cohen The preparation and spectrum of uranium(V) ions in aqueous solutions , 1970 .

[55]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[56]  J. Selbin,et al.  Chemistry of uranium (V) , 1969 .

[57]  A. Blaise,et al.  Magnetic Structures and Properties of UFeO4 , 1969 .

[58]  H. Hoekstra,et al.  SOME URANIUM-TRANSITION ELEMENT DOUBLE OXIDES. , 1967 .

[59]  R. Haag,et al.  Studies in the System MgUO3—MgUO4 , 1964 .

[60]  E. F. Juenke,et al.  The system Cr2O3UO2O2 , 1962 .

[61]  C. F. Cline,et al.  X-ray Data for the Chrome-Urania System, Cr2O3·2UO3 , 1961, Nature.

[62]  H. Borchardt Observations on reactions of uranium compounds , 1959 .

[63]  W. Zachariasen Crystal chemical studies of the 5f-series of elements. XXI. The crystal structure of magnesium orthouranate , 1954 .

[64]  K. Kraus,et al.  Chemistry of Aqueous Uranium(V) Solutions. II. Reaction of Uranium Pentachloride with Water. Thermodynamic Stability of UO2+. Potential of U(IV)/(V), U(IV)/(VI) and U(V)/(VI) Couples , 1949 .

[65]  W. Zachariasen Crystal chemical studies of the 5f-series of elements. IV. The crystal structure of Ca(UO2)O2 and Sr(UO2)O2 , 1948 .