Nanostructured TiO2 anatase-rutile-carbon solid coating with visible light antimicrobial activity

[1]  I. Parkin,et al.  High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD , 2018 .

[2]  R. Boichot,et al.  Titania Solid Thin Films Deposited by pp‐MOCVD Exhibiting Visible Light Photocatalytic Activity , 2018 .

[3]  S. Meriç,et al.  Photocatalytic activity based-optimization of TTIP thin films for E-coli inactivation: Effect of Mn and Cu dopants , 2017 .

[4]  Brid Quilty,et al.  Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections , 2016, Scientific Reports.

[5]  G. Fazio,et al.  Charge Carriers Separation at the Graphene/(101) Anatase TiO2 Interface , 2016 .

[6]  S. Halder,et al.  Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents , 2015, SpringerPlus.

[7]  Y. Weng,et al.  Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2 , 2015, Scientific Reports.

[8]  T. Goto,et al.  A feather-like structure of β-Al2TiO5 film prepared by laser chemical vapor deposition , 2015 .

[9]  Lei Liu,et al.  Black titanium dioxide (TiO2) nanomaterials. , 2015, Chemical Society reviews.

[10]  Xiaobo Chen,et al.  Correction: Black titanium dioxide (TiO2) nanomaterials. , 2015, Chemical Society reviews.

[11]  W. Macyk,et al.  Visible light induced photocatalytic inactivation of bacteria by modified titanium dioxide films on organic polymers. , 2015, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[12]  Qiuxiang Wang,et al.  Engineering a high energy surface of anatase TiO2 crystals towards enhanced performance for energy conversion and environmental applications , 2015 .

[13]  Landong Li,et al.  Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production , 2015, Nature Communications.

[14]  E. Rauch,et al.  Automated crystal orientation and phase mapping in TEM , 2014 .

[15]  S. Pillai,et al.  New Insights into the Mechanism of Visible Light Photocatalysis. , 2014, The journal of physical chemistry letters.

[16]  M. Batzill,et al.  Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films , 2014, Scientific Reports.

[17]  Bunsho Ohtani,et al.  Titania Photocatalysis beyond Recombination: A Critical Review , 2013 .

[18]  Michael R Hamblin,et al.  Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. , 2013, FEMS microbiology reviews.

[19]  S. Krumdieck,et al.  Scale-up design for industrial development of a PP-MOCVD coating system , 2013 .

[20]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[21]  William A Rutala,et al.  Self-disinfecting surfaces: review of current methodologies and future prospects. , 2013, American journal of infection control.

[22]  T. Jardiel,et al.  Soft solution fluorine-free synthesis of anatase nanoparticles with tailored morphology , 2013 .

[23]  Miriam Rafailovich,et al.  Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. , 2011, Future microbiology.

[24]  X. Lou,et al.  Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage , 2011 .

[25]  R. Leary,et al.  Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis , 2011 .

[26]  F. Kang,et al.  Carbon-coated TiO 2 composites for the photocatalytic degradation of low concentration benzene , 2011 .

[27]  D. Tsai,et al.  Synthesis and characterization of well-aligned anatase TiO2nanocrystals on fused silicavia metal–organic vapor deposition , 2009 .

[28]  Ivan P. Parkin,et al.  Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections , 2009 .

[29]  Ivana Fenoglio,et al.  Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. , 2009, Chemistry.

[30]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[31]  Richard M. Lueptow,et al.  Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. , 2008, Environmental science & technology.

[32]  Susan Krumdieck,et al.  Development of a model for high precursor conversion efficiency pulsed-pressure chemical vapor deposition (PP-CVD) processing , 2008 .

[33]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[34]  S. Mathur,et al.  CVD of titanium oxide coatings: Comparative evaluation of thermal and plasma assisted processes , 2006 .

[35]  T. Goto,et al.  High-speed oxide coating by laser chemical vapor deposition and their nano-structure , 2006 .

[36]  Ulrike Diebold,et al.  Steps on anatase TiO2(101) , 2006, Nature materials.

[37]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[38]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Cesar Pulgarin,et al.  Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time , 2004 .

[40]  R. Kurek,et al.  Historical overview and future prospects , 2004, Clinical & Experimental Metastasis.

[41]  K. Hashimoto,et al.  Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst , 2003 .

[42]  N. Yamaguchi,et al.  Microstructure Modification of Yttria-Stabilized Zirconia Layers Prepared by EB-PVD , 2003 .

[43]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[44]  M. Matsumura,et al.  Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component in HF Solution , 2001 .

[45]  R. Raj,et al.  Experimental characterization and modeling of pulsed MOCVD with ultrasonic atomization of liquid precursor , 2001 .

[46]  Rutsch,et al.  Synthesis and Reactivity of , 2000, Angewandte Chemie.

[47]  P. Marcus,et al.  An in situ XPS study of sputter-deposited aluminium thin films on graphite , 1994 .

[48]  Hugh O. Pierson,et al.  FUNDAMENTALS OF CHEMICAL VAPOR DEPOSITION , 1992 .

[49]  H. Knözinger,et al.  An X-ray photoelectron spectroscopy study of oxides of arsenic supported on TiO2 , 1991 .

[50]  Y. Takahashi,et al.  Rutile growth at the surface of TiO2 films deposited by vapour-phase decomposition of isopropyl titanate , 1985 .

[51]  W. A. Bryant,et al.  The fundamentals of chemical vapour deposition , 1977 .

[52]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.