Minimizing Higgs potentials via numerical polynomial homotopy continuation

[1]  D. Mehta,et al.  Energy-landscape analysis of the two-dimensional nearest-neighbor φ⁴ model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Robert A. van de Geijn,et al.  High-performance up-and-downdating via householder-like transformations , 2011, TOMS.

[3]  Dhagash Mehta,et al.  Phase transitions detached from stationary points of the energy landscape. , 2011, Physical review letters.

[4]  Dhagash Mehta,et al.  Numerical Polynomial Homotopy Continuation Method and String Vacua , 2011, 1108.1201.

[5]  O. Nachtmann,et al.  Symmetries and renormalisation in two-Higgs-doublet models , 2011, 1106.1436.

[6]  M. N. Rebelo,et al.  Theory and phenomenology of two-Higgs-doublet models , 2011, 1106.0034.

[7]  Dhagash Mehta,et al.  Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Dhagash Mehta,et al.  Stationary point analysis of the one-dimensional lattice Landau gauge fixing functional, aka random phase XY Hamiltonian , 2010, 1010.5335.

[9]  H. Haber,et al.  Geometric picture of generalized-CP and Higgs-family transformations in the two-Higgs-doublet model , 2010, 1010.0935.

[10]  I. Ginzburg,et al.  Evolution of vacuum states and phase transitions in the two Higgs doublet model during cooling of the Universe , 2009, 0911.2383.

[11]  Cyril Hugonie,et al.  The Next-to-Minimal Supersymmetric Standard Model , 2009, 0910.1785.

[12]  M. Maniatis,et al.  The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed , 2009, 0906.0777.

[13]  Tsung-Lin Lee,et al.  HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.

[14]  C. Nishi,et al.  Physical Parameters And Basis Transformations In The Two-higgs-doublet Model , 2007, 0712.4260.

[15]  O. Nachtmann,et al.  Determining the global minimum of Higgs potentials via Groebner bases – applied to the NMSSM , 2006, hep-ph/0608314.

[16]  Paul Langacker,et al.  Higgs sector in extensions of the minimal supersymmetric standard model , 2006 .

[17]  O. Nachtmann,et al.  Stability and symmetry breaking in the general two-Higgs-doublet model , 2006, hep-ph/0605184.

[18]  M. Frigerio,et al.  Quaternion family symmetry of quarks and leptons , 2004, hep-ph/0409187.

[19]  L. Lavoura,et al.  A Discrete symmetry group for maximal atmospheric neutrino mixing , 2003, hep-ph/0305046.

[20]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[21]  T. D. Lee,et al.  A Theory of Spontaneous T Violation , 1973 .

[22]  W. Marsden I and J , 2012 .

[23]  Frank Sottile,et al.  ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS , 2011 .

[24]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[25]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[26]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .