Nanophotonic catalytic combustion enlightens mid-infrared light source

[1]  W. Schuhmann,et al.  A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation , 2022, Nature Catalysis.

[2]  Zhiyu Hu,et al.  Thermoelectric converter: Strategies from materials to device application , 2021, Nano Energy.

[3]  Yadong Yin,et al.  Mastering the surface strain of platinum catalysts for efficient electrocatalysis , 2021, Nature.

[4]  Changying Zhao,et al.  Selective Thermophotovoltaic Emitter with Aperiodic Multilayer Structures Designed by Machine Learning , 2021 .

[5]  Chengkuo Lee,et al.  Metamaterial technologies for miniaturized infrared spectroscopy: Light sources, sensors, filters, detectors, and integration , 2020, Journal of Applied Physics.

[6]  N. Zheng,et al.  Nanoscale engineering of catalytic materials for sustainable technologies , 2020, Nature Nanotechnology.

[7]  Christopher H. Hendon,et al.  Using nature’s blueprint to expand catalysis with Earth-abundant metals , 2020, Science.

[8]  Yurui Qu,et al.  Directional and Spectral Control of Thermal Emission and Its Application in Radiative Cooling and Infrared Light Sources , 2020 .

[9]  S. Shaik,et al.  Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. , 2020, Journal of the American Chemical Society.

[10]  P. Erhart,et al.  A Library of Late Transition Metal Alloy Dielectric Functions for Nanophotonic Applications , 2020, Advanced Functional Materials.

[11]  H. Dai,et al.  Pt Co/meso-MnO : Highly efficient catalysts for low-temperature methanol combustion , 2019, Catalysis Today.

[12]  I. Staude,et al.  Light-emitting metasurfaces , 2019, Nanophotonics.

[13]  Z. Tian,et al.  Electric field–induced selective catalysis of single-molecule reaction , 2019, Science Advances.

[14]  E. Antolini Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review , 2018, Applied Catalysis B: Environmental.

[15]  P. McIntyre,et al.  Dynamic thermal emission control with InAs-based plasmonic metasurfaces , 2018, Science Advances.

[16]  Cesar Jauregui,et al.  Watt-scale super-octave mid-infrared intrapulse difference frequency generation , 2018, Light: Science & Applications.

[17]  Andrea Alù,et al.  Nanophotonic engineering of far-field thermal emitters , 2018, Nature Materials.

[18]  G. Baffou Gold nanoparticles as nanosources of heat , 2018 .

[19]  Zhiyu Hu,et al.  Creating 20 nm thin patternable flat fire , 2017 .

[20]  M. L. Lee,et al.  Next-generation mid-infrared sources , 2017 .

[21]  M. Störmer,et al.  Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions , 2016, Nature Communications.

[22]  Xiaohong Wang,et al.  In situ preparation of catalytic combustion films used as micro heat source by inkjet printing method , 2015 .

[23]  Xiaohong Wang,et al.  Preparing two-dimensional nano-catalytic combustion patterns using direct inkjet printing , 2014 .

[24]  Susumu Noda,et al.  Realization of dynamic thermal emission control. , 2014, Nature materials.

[25]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[26]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[27]  Serge Monneret,et al.  Photoinduced heating of nanoparticle arrays. , 2013, ACS nano.

[28]  Jingguang G. Chen,et al.  Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. , 2012, Chemical reviews.

[29]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[30]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[31]  T. Thundat,et al.  Nanocatalytic Spontaneous Ignition and Self-Supporting Room-Temperature Combustion , 2005 .

[32]  Gabor A. Somorjai,et al.  Ethylene Hydrogenation over Platinum Nanoparticle Array Model Catalysts Fabricated by Electron Beam Lithography: Determination of Active Metal Surface Area , 2002 .

[33]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[34]  G. Somorjai,et al.  Nanoparticle arrays as model catalysts: Microstructure, thermal stability and reactivity of Pt/SiO2 and Ag/Al2O3 fabricated by electron beam lithography , 2000 .

[35]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[36]  S. Wind,et al.  New model catalysts: uniform platinum cluster arrays produced by electron beam lithography , 1996 .

[37]  T. Thundat,et al.  Nanoscale Energy Conversion by Using Nano-Catalytic Particles , 2006 .

[38]  G. Somorjai,et al.  Formation of Platinum Silicide on a Platinum Nanoparticle Array Model Catalyst Deposited on Silica during Chemical Reaction , 2001 .

[39]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .