Non-standard fractional Lagrangians

Two mathematical physics’ approaches have recently gained increasing importance both in mathematical and in physical theories: (i) the fractional action-like variational approach which founds its significance in dissipative and non-conservative systems and (ii) the theory of non-standard Lagrangians which exist in some group of dissipative dynamical systems and are entitled “non-natural” by Arnold. Both approaches are discussed independently in the literature; nevertheless, we believe that the combination of both theories will help identifying more hidden solutions in certain classes of dynamical systems. Accordingly, we generalize the fractional action-like variational approach for the case of non-standard power-law Lagrangians of the form L1+γ$(\gamma\in\mathbb{R})$ recently introduced by the author (Qual. Theory Dyn. Syst. doi:10.1007/s12346-012-0074-0, 2012). Many interesting features are discussed in some details.

[1]  G. Calcagni Quantum field theory, gravity and cosmology in a fractal universe , 2010, 1001.0571.

[2]  R. El-Nabulsi Lagrangian and Hamiltonian dynamics with imaginary time , 2012 .

[3]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[4]  V. J. Majd,et al.  An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index , 2012 .

[5]  R A El Nabulsi THE FRACTIONAL CALCULUS OF VARIATIONS FROM EXTENDED ERDELYI-KOBER OPERATOR , 2009 .

[6]  R A El Nabulsi A FRACTIONAL ACTION-LIKE VARIATIONAL APPROACH OF SOME CLASSICAL, QUANTUM AND GEOMETRICAL DYNAMICS , 2005 .

[7]  Dumitru Baleanu,et al.  Fractional Euler–Lagrange equations revisited , 2012 .

[8]  I. Podlubny Fractional differential equations , 1998 .

[9]  E. M. Wright Path integral approach to the Schrödinger equation with a complex potential , 1984 .

[10]  V. K. Chandrasekar,et al.  Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator , 2009 .

[11]  Delfim F. M. Torres,et al.  NECESSARY OPTIMALITY CONDITIONS FOR FRACTIONAL DIFFERENCE PROBLEMS OF THE CALCULUS OF VARIATIONS , 2010, 1007.0594.

[12]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[13]  R. Nabulsi A FRACTIONAL APPROACH TO NON-CONSERVATIVE LAGRANGIAN DYNAMICAL SYSTEMS , 2005 .

[14]  A. R. El-Nabulsi FRACTIONAL QUANTUM EULER–CAUCHY EQUATION IN THE SCHRÖDINGER PICTURE, COMPLEXIFIED HARMONIC OSCILLATORS AND EMERGENCE OF COMPLEXIFIED LAGRANGIAN AND HAMILTONIAN DYNAMICS , 2009 .

[15]  B. A. Arbuzov,et al.  Classical Yang-Mills field theory with nonstandard Lagrangians , 1984 .

[16]  H. Nielsen Initial Condition Model from Imaginary Part of Action and the Information Loss , 2009, 0911.3859.

[17]  Jan L. Cieslinski,et al.  A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients , 2009, 0912.5296.

[18]  Complex lapse, complex action, and path integrals. , 1995, Physical review. D, Particles and fields.

[19]  Rami Ahmad El-Nabulsi,et al.  Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent , 2014 .

[21]  Extending Bauer's corollary to fractional derivatives , 2003, physics/0312085.

[22]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[23]  Nonconservative Lagrangian mechanics: a generalized function approach , 2003, physics/0306142.

[24]  Constraints on Dirac-Born-Infeld type dark energy models from varying alpha , 2004, hep-th/0412002.

[25]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[26]  Problems with complex actions , 2006, hep-th/0609146.

[27]  A. R. El-Nabulsi Quantum field theory from an exponential action functional , 2013 .

[28]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[29]  H. Rezazadeh,et al.  Non-standard complex Lagrangian dynamics , 2013 .

[30]  Zdzislaw E. Musielak,et al.  General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems , 2009 .

[31]  S. Tsujikawa,et al.  WHAT IS NEEDED OF A TACHYON IF IT IS TO BE THE DARK ENERGY , 2004, hep-th/0411192.

[32]  V. Aldaya,et al.  Higher-order Hamiltonian formalism in field theory , 1980 .

[33]  A. R. El-Nabulsi Extended fractional calculus of variations, complexified geodesics and Wong's fractional equations on complex plane and on Lie algebroids , 2011 .

[34]  El-nabulsi Ahmad Rami,et al.  A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators , 2011 .

[35]  D. Tannor,et al.  Interference in Bohmian mechanics with complex action. , 2007, The Journal of chemical physics.

[36]  Rami Ahmad El-Nabulsi,et al.  The fractional Boltzmann transport equation , 2011, Comput. Math. Appl..

[37]  El-nabulsi Ahmad Rami,et al.  Fractional variational problems from extended exponentially fractional integral , 2011 .

[38]  J. A. Tenreiro Machado,et al.  New Trends in Nanotechnology and Fractional Calculus Applications , 2010 .

[39]  S. Ghosh,et al.  ON THE QUANTIZATION OF DAMPED HARMONIC OSCILLATOR , 2009 .

[40]  J. Cariñena Theory of Singular Lagrangians , 1990 .

[41]  Agnieszka B. Malinowska,et al.  Composition Functionals in Fractional Calculus of Variations , 2010, 1009.2671.

[42]  M. Milošević,et al.  About non standard Lagrangians in cosmology , 2012 .

[43]  L. Vitagliano,et al.  The Lagrangian-Hamiltonian formalism for higher order field theories , 2009, 0905.4580.

[44]  A geometric analysis of dynamical systems with singular Lagrangians , 2011 .

[45]  V. K. Chandrasekar,et al.  Unusual Liénard-type nonlinear oscillator. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  R. MacKenzie,et al.  Path integration and perturbation theory with complex Euclidean actions , 2008, 0802.0354.

[47]  Dixon,et al.  Solutions of a generalized Emden equation and their physical significance. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[48]  Eqab M. Rabei,et al.  On Hamiltonian Formulation of Non-Conservative Systems , 2004 .

[49]  H. Nielsen,et al.  What comes beyond the standard models , 2004, 0912.4532.

[50]  Zdzislaw E. Musielak,et al.  Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients , 2008 .

[51]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[52]  On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator , 2006, nlin/0611048.

[53]  Ben Muatjetjeja,et al.  Lagrangian formulation of a generalized Lane-Emden equation and double reduction , 2008 .

[54]  Rami Ahmad El-Nabulsi,et al.  Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator , 2011 .

[55]  Manuel de León,et al.  Generalized classical mechanics and field theory , 1985 .

[56]  Delfim F. M. Torres,et al.  Fractional variational problems depending on indefinite integrals , 2011, 1102.3360.

[57]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[58]  J. Cresson,et al.  Irreversibility, least action principle and causality , 2008, 0812.3529.

[59]  L. Vitagliano ON HIGHER DERIVATIVES AS CONSTRAINTS IN FIELD THEORY: A GEOMETRIC PERSPECTIVE , 2010, 1009.6054.

[60]  Supriya Mukherjee,et al.  Solution of Modified Equations of Emden-Type by Differential Transform Method , 2011 .

[61]  Ben Muatjetjeja,et al.  Exact solutions of the generalized Lane–Emden equations of the first and second kind , 2011 .

[62]  V. K. Chandrasekar,et al.  A simple and unified approach to identify integrable nonlinear oscillators and systems , 2005, nlin/0511030.

[63]  Jos'e F. Carinena,et al.  Lagrangian formalism for nonlinear second-order Riccati systems: One-dimensional integrability and two-dimensional superintegrability , 2005 .

[64]  C. G. Wu,et al.  Fractional Complexified Field Theory from Saxena-Kumbhat Fractional Integral, Fractional Derivative of Order ($\alpha, \beta$) and Dynamical Fractional Integral Exponent , 2012 .

[65]  G. Calcagni Fractal universe and quantum gravity. , 2009, Physical review letters.

[66]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[67]  Simón,et al.  Higher-derivative Lagrangians, nonlocality, problems, and solutions. , 1990, Physical review. D, Particles and fields.

[68]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[69]  A. R. El-Nabulsi,et al.  Non-Linear Dynamics with Non-Standard Lagrangians , 2013 .

[70]  Teodor M. Atanackovic,et al.  Variational problems with fractional derivatives: Invariance conditions and N\ , 2009, 1101.2962.

[71]  H. Nielsen,et al.  Formulation of Complex Action Theory , 2011, 1104.3381.

[72]  Rami Ahmad El-Nabulsi,et al.  Gravitons in Fractional Action Cosmology , 2012 .

[73]  Wei Xu,et al.  HAMILTONIAN DESCRIPTION OF SINGULAR LAGRANGIAN SYSTEMS WITH SPONTANEOUSLY BROKEN TIME TRANSLATION SYMMETRY , 2012, 1206.2983.

[74]  A. R. El-Nabulsi Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional , 2013 .

[75]  Agnieszka B. Malinowska,et al.  Fractional calculus of variations for a combined Caputo derivative , 2011, 1109.4664.

[76]  C. Coimbra,et al.  Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation , 2009 .

[77]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[79]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[80]  Rami Ahmad El-Nabulsi,et al.  FRACTIONAL FIELD THEORIES FROM MULTI-DIMENSIONAL FRACTIONAL VARIATIONAL PROBLEMS , 2008 .

[81]  Dag Lukkassen,et al.  Reiterated homogenization of non-standard Lagrangians , 2001 .

[82]  Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics. , 2006 .

[83]  José F. Cariñena,et al.  Geometric Lagrangian approach to first‐order systems and applications , 1988 .

[84]  A. R. El-Nabulsi THE FRACTIONAL CALCULUS OF VARIATIONS FROM EXTENDED ERDÉLYI-KOBER OPERATOR , 2009 .

[85]  Agnieszka B. Malinowska,et al.  Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics , 2012, 1203.1961.

[86]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[87]  Agnieszka B. Malinowska,et al.  Multiobjective fractional variational calculus in terms of a combined Caputo derivative , 2010, Appl. Math. Comput..

[88]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[89]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .