Euclid: Superluminous supernovae in the Deep Survey
暂无分享,去创建一个
M. Sullivan | V. Conforti | M. Trifoglio | J. Dinis | E. Maiorano | J. Amiaux | M. Maris | C. Burigana | E. Cappellaro | I. Lloro | S. J. Smartt | M. Della Valle | M. Brescia | S. Cavuoti | G. Longo | R. Scaramella | I. Tereno | K. Jahnke | L. Valenziano | R. C. Nichol | T. Kitching | E. Franceschi | P. Hudelot | R. Toledo-Moreo | H. Kurki-Suonio | R. Nichol | J. Amiaux | T. Kitching | J. Rhodes | R. Scaramella | L. Valenziano | H. Kurki-Suonio | P. Hudelot | I. Hook | C. Tao | K. Jahnke | M. Trifoglio | S. Smartt | M. Sullivan | G. Longo | A. Silva | M. Brescia | S. Cavuoti | E. Cappellaro | M. Valle | C. Inserra | C. Burigana | A. Rosa | E. Franceschi | M. Maris | R. Toledo-Moreo | J. Cuillandre | E. Maiorano | I. Lloro | V. Conforti | I. Tereno | C. Carvalho | I. Hook | J.-C. Cuillandre | C. Inserra | A. De Rosa | C. Tao | D. Scovacricchi | D. Scovacricchi | J. Dinis | J. Dinis | C. S. Carvalho | A. da Silva | J. D. Rhodes | M. D. Valle | J. Cuillandre | Robert C. Nichol | R. Nichol | M. Sullivan
[1] D. A. Kann,et al. Highly luminous supernovae associated with gamma-ray bursts , 2016, Astronomy & Astrophysics.
[2] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[3] E. Ofek,et al. Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2017, The Astrophysical Journal.
[4] A. Rest,et al. Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints , 2017, The Astrophysical Journal.
[5] K. Maguire,et al. On the nature of hydrogen-rich superluminous supernovae , 2016, 1604.01226.
[6] S. Smartt,et al. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm , 2017, 1708.04618.
[7] David O. Jones,et al. Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.
[8] R. Nichol,et al. DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang , 2017, 1707.06649.
[9] R. Nichol,et al. Dynamical dark energy in light of the latest observations , 2017, Nature Astronomy.
[10] K. Maguire,et al. Complexity in the light curves and spectra of slow-evolving superluminous supernovae , 2017, 1701.00941.
[11] D. Bacon,et al. Measuring weak lensing correlations of Type Ia supernovae , 2016, 1611.01315.
[12] E. Berger,et al. X-Rays from the Location of the Double-humped Transient ASASSN-15lh , 2016, The Astrophysical journal.
[13] M. Valle,et al. On extreme transient events from rotating black holes and their gravitational wave emission , 2016, 1610.00535.
[14] M. Sullivan,et al. The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole , 2016, Nature Astronomy.
[15] S. Smartt,et al. Superluminous supernova progenitors have a half-solar metallicity threshold , 2016, 1605.04925.
[16] M. Sullivan,et al. The volumetric rate of superluminous supernovae at z ∼ 1 , 2016, 1605.05250.
[17] J. Solà,et al. First Evidence of Running Cosmic Vacuum: Challenging the Concordance Model , 2016, 1602.02103.
[18] K. Maguire,et al. LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES , 2016, 1608.02994.
[19] S. Smartt,et al. SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY , 2016, 1607.02353.
[20] P. Vreeswijk,et al. HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.
[21] K. Maguire,et al. SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.
[22] Massimo Brescia,et al. An analysis of feature relevance in the classification of astronomical transients with machine learning methods , 2016, 1601.03931.
[23] O. Benvenuto,et al. THE UNUSUAL SUPER-LUMINOUS SUPERNOVAE SN 2011KL AND ASASSN-15LH , 2016, 1601.01021.
[24] R. Nichol,et al. Cosmology with superluminous supernovae , 2015, 1511.06670.
[25] D. Bersier,et al. ASASSN-15lh: A highly super-luminous supernova , 2015, Science.
[26] S. Blinnikov,et al. Can pair-instability supernova models match the observations of superluminous supernovae? , 2015, 1510.00439.
[27] Adam G. Riess,et al. THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.
[28] A. M. Swinbank,et al. hsim: a simulation pipeline for the HARMONI integral field spectrograph on the European ELT , 2015, 1508.04441.
[29] D. A. Kann,et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.
[30] R. Nichol,et al. OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results , 2015, 1504.03039.
[31] R. C. Wolf,et al. AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.
[32] K. Maguire,et al. On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.
[33] M. Sullivan,et al. DES13S2cmm: the first superluminous supernova from the Dark Energy Survey , 2015, 1501.07232.
[34] R. Kotak,et al. Machine learning for transient discovery in Pan-STARRS1 difference imaging , 2015, 1501.05470.
[35] A. Fontana,et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.
[36] Rodrigo Fernandez,et al. Kilonova light curves from the disc wind outflows of compact object mergers , 2014, 1411.3726.
[37] Adam D. Myers,et al. Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.
[38] M. Sullivan,et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.
[39] M. S. Shahriar,et al. Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.
[40] D. Malesani,et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.
[41] B. Metzger,et al. Neutron-powered precursors of kilonovae , 2014, 1409.0544.
[42] R. Kotak,et al. Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 medium deep survey , 2014, 1402.1631.
[43] P. Graff,et al. PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.
[44] W. M. Wood-Vasey,et al. Extending the supernova Hubble diagram to z ~ 1.5 with the Euclid space mission , 2014, 1409.8562.
[45] E. Ofek,et al. THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION , 2014, 1409.8287.
[46] S. Smartt,et al. SUPERLUMINOUS SUPERNOVAE AS STANDARDIZABLE CANDLES AND HIGH-REDSHIFT DISTANCE PROBES , 2014, 1409.4429.
[47] S. Gezari,et al. RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1 , 2014, 1405.3668.
[48] M. Sullivan,et al. Superluminous supernovae from PESSTO , 2014, 1405.1325.
[49] M. Sullivan,et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.
[50] S. Smartt,et al. HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.
[51] A. Pastorello,et al. Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.
[52] J. Prieto,et al. THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.
[53] P. Astier,et al. TWO SUPERLUMINOUS SUPERNOVAE FROM THE EARLY UNIVERSE DISCOVERED BY THE SUPERNOVA LEGACY SURVEY , 2013, 1310.0470.
[54] Naoki Yoshida,et al. Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys – II. Beyond z = 6 , 2013, 1306.3743.
[55] J. Wheeler,et al. ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: χ2-MINIMIZATION OF PARAMETER FITS , 2013, 1306.3447.
[56] L. Amendola,et al. Accurate weak lensing of standard candles. I. Flexible cosmological fits , 2013, 1304.7689.
[57] A. Pastorello,et al. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.
[58] J. Wheeler,et al. Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.
[59] R. Nichol,et al. COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.
[60] P. Jakobsson,et al. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310 , 2012, 1209.1506.
[61] Jeff Cooke,et al. Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.
[62] D. Kasen,et al. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.
[63] A. Gal-yam. Luminous Supernovae , 2012, Science.
[64] S. Blondin,et al. Superluminous supernovae: 56Ni power versus magnetar radiation , 2012, 1208.1214.
[65] S. Smartt,et al. ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.
[66] Naoki Yoshida,et al. Detectability of high‐redshift superluminous supernovae with upcoming optical and near‐infrared surveys , 2012, 1202.3610.
[67] M. Sullivan,et al. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.
[68] E. O. Ofek,et al. Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.
[69] Robert J. Hanisch,et al. New Horizons in Time Domain Astronomy : proceedings of the 285th Symposium of the International Astronomical Union held in Oxford, United Kingdom, September 19-23, 2011 , 2012 .
[70] A. M. S. Oderberg,et al. Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies , 2012 .
[71] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[72] M. Sullivan,et al. SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.
[73] Gautham Narayan,et al. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED , 2010, 1011.5910.
[74] M. Franx,et al. A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr , 2009, Nature.
[75] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[76] M. Sullivan,et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.
[77] Las Cumbres Observatory Global Telescope Network,et al. ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.
[78] Mohan Ganeshalingam,et al. Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.
[79] Lars Bildsten,et al. SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.
[80] S. Woosley. BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.
[81] M. Sullivan,et al. Supernova 2007bi as a pair-instability explosion , 2009, Nature.
[82] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[83] W. M. Wood-Vasey,et al. TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED , 2009, 0908.0536.
[84] S. Valenti,et al. Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.
[85] S. Woosley,et al. Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.
[86] M. Sullivan,et al. K-Corrections and Spectral Templates of Type Ia Supernovae , 2007, astro-ph/0703529.
[87] M. Sullivan,et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.
[88] Massimo Della Valle,et al. On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.
[89] S. Roweis,et al. K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.
[90] A. Riess,et al. Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006, astro-ph/0612666.
[91] A. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[92] P. Astier,et al. SALT : a spectral adaptive light curve template for type Ia supernovae , 2005 .
[93] J. Dunlop,et al. The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.
[94] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[95] A. S. Fruchter,et al. Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves , 2001, astro-ph/0104382.
[96] R. Ellis,et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.
[97] M. Chevallier,et al. ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.
[98] A. G. Alexei,et al. OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .
[99] A. Riess,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[100] R. Smith,et al. The morphology of type ia supernovae light curves , 1996, astro-ph/9609063.
[101] J. C. Lee,et al. Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35 , 1996, astro-ph/9608192.
[102] William Press,et al. A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.
[103] A. Kim,et al. A GENERALIZED K CORRECTION FOR TYPE IA SUPERNOVAE: COMPARING R-BAND PHOTOMETRY BEYOND Z=0.2 WITH B, V, AND R-BAND NEARBY PHOTOMETRY , 1995, astro-ph/9505024.
[104] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[105] N. Gehrels. Confidence limits for small numbers of events in astrophysical data , 1986 .
[106] J. Kraus,et al. Radio Spectra and Red Shifts of QSOs. , 1974 .