Euclid: Superluminous supernovae in the Deep Survey

Context. In the last decade, astronomers have found a new type of supernova called ‘superluminous supernovae’ (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ∼ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. To estimate the uncertainties, we calculated their distribution with two different set-ups, namely optimistic and pessimistic, adopting different star formation densities and rates. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints. Results. We show that Euclid should detect approximately 140 high-quality SLSNe-I to z ∼ 3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z > 1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey. Conclusions. We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both astrophysics and cosmology.

[1]  D. A. Kann,et al.  Highly luminous supernovae associated with gamma-ray bursts , 2016, Astronomy & Astrophysics.

[2]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[3]  E. Ofek,et al.  Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2017, The Astrophysical Journal.

[4]  A. Rest,et al.  Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints , 2017, The Astrophysical Journal.

[5]  K. Maguire,et al.  On the nature of hydrogen-rich superluminous supernovae , 2016, 1604.01226.

[6]  S. Smartt,et al.  Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm , 2017, 1708.04618.

[7]  David O. Jones,et al.  Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.

[8]  R. Nichol,et al.  DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang , 2017, 1707.06649.

[9]  R. Nichol,et al.  Dynamical dark energy in light of the latest observations , 2017, Nature Astronomy.

[10]  K. Maguire,et al.  Complexity in the light curves and spectra of slow-evolving superluminous supernovae , 2017, 1701.00941.

[11]  D. Bacon,et al.  Measuring weak lensing correlations of Type Ia supernovae , 2016, 1611.01315.

[12]  E. Berger,et al.  X-Rays from the Location of the Double-humped Transient ASASSN-15lh , 2016, The Astrophysical journal.

[13]  M. Valle,et al.  On extreme transient events from rotating black holes and their gravitational wave emission , 2016, 1610.00535.

[14]  M. Sullivan,et al.  The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole , 2016, Nature Astronomy.

[15]  S. Smartt,et al.  Superluminous supernova progenitors have a half-solar metallicity threshold , 2016, 1605.04925.

[16]  M. Sullivan,et al.  The volumetric rate of superluminous supernovae at z ∼ 1 , 2016, 1605.05250.

[17]  J. Solà,et al.  First Evidence of Running Cosmic Vacuum: Challenging the Concordance Model , 2016, 1602.02103.

[18]  K. Maguire,et al.  LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES , 2016, 1608.02994.

[19]  S. Smartt,et al.  SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY , 2016, 1607.02353.

[20]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[21]  K. Maguire,et al.  SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.

[22]  Massimo Brescia,et al.  An analysis of feature relevance in the classification of astronomical transients with machine learning methods , 2016, 1601.03931.

[23]  O. Benvenuto,et al.  THE UNUSUAL SUPER-LUMINOUS SUPERNOVAE SN 2011KL AND ASASSN-15LH , 2016, 1601.01021.

[24]  R. Nichol,et al.  Cosmology with superluminous supernovae , 2015, 1511.06670.

[25]  D. Bersier,et al.  ASASSN-15lh: A highly super-luminous supernova , 2015, Science.

[26]  S. Blinnikov,et al.  Can pair-instability supernova models match the observations of superluminous supernovae? , 2015, 1510.00439.

[27]  Adam G. Riess,et al.  THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.

[28]  A. M. Swinbank,et al.  hsim: a simulation pipeline for the HARMONI integral field spectrograph on the European ELT , 2015, 1508.04441.

[29]  D. A. Kann,et al.  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[30]  R. Nichol,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results , 2015, 1504.03039.

[31]  R. C. Wolf,et al.  AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.

[32]  K. Maguire,et al.  On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.

[33]  M. Sullivan,et al.  DES13S2cmm: the first superluminous supernova from the Dark Energy Survey , 2015, 1501.07232.

[34]  R. Kotak,et al.  Machine learning for transient discovery in Pan-STARRS1 difference imaging , 2015, 1501.05470.

[35]  A. Fontana,et al.  Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.

[36]  Rodrigo Fernandez,et al.  Kilonova light curves from the disc wind outflows of compact object mergers , 2014, 1411.3726.

[37]  Adam D. Myers,et al.  Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.

[38]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[39]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[40]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[41]  B. Metzger,et al.  Neutron-powered precursors of kilonovae , 2014, 1409.0544.

[42]  R. Kotak,et al.  Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 medium deep survey , 2014, 1402.1631.

[43]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[44]  W. M. Wood-Vasey,et al.  Extending the supernova Hubble diagram to z ~ 1.5 with the Euclid space mission , 2014, 1409.8562.

[45]  E. Ofek,et al.  THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION , 2014, 1409.8287.

[46]  S. Smartt,et al.  SUPERLUMINOUS SUPERNOVAE AS STANDARDIZABLE CANDLES AND HIGH-REDSHIFT DISTANCE PROBES , 2014, 1409.4429.

[47]  S. Gezari,et al.  RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1 , 2014, 1405.3668.

[48]  M. Sullivan,et al.  Superluminous supernovae from PESSTO , 2014, 1405.1325.

[49]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[50]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[51]  A. Pastorello,et al.  Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.

[52]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[53]  P. Astier,et al.  TWO SUPERLUMINOUS SUPERNOVAE FROM THE EARLY UNIVERSE DISCOVERED BY THE SUPERNOVA LEGACY SURVEY , 2013, 1310.0470.

[54]  Naoki Yoshida,et al.  Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys – II. Beyond z = 6 , 2013, 1306.3743.

[55]  J. Wheeler,et al.  ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: χ2-MINIMIZATION OF PARAMETER FITS , 2013, 1306.3447.

[56]  L. Amendola,et al.  Accurate weak lensing of standard candles. I. Flexible cosmological fits , 2013, 1304.7689.

[57]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[58]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[59]  R. Nichol,et al.  COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.

[60]  P. Jakobsson,et al.  Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310 , 2012, 1209.1506.

[61]  Jeff Cooke,et al.  Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.

[62]  D. Kasen,et al.  SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.

[63]  A. Gal-yam Luminous Supernovae , 2012, Science.

[64]  S. Blondin,et al.  Superluminous supernovae: 56Ni power versus magnetar radiation , 2012, 1208.1214.

[65]  S. Smartt,et al.  ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.

[66]  Naoki Yoshida,et al.  Detectability of high‐redshift superluminous supernovae with upcoming optical and near‐infrared surveys , 2012, 1202.3610.

[67]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[68]  E. O. Ofek,et al.  Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.

[69]  Robert J. Hanisch,et al.  New Horizons in Time Domain Astronomy : proceedings of the 285th Symposium of the International Astronomical Union held in Oxford, United Kingdom, September 19-23, 2011 , 2012 .

[70]  A. M. S. Oderberg,et al.  Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies , 2012 .

[71]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[72]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[73]  Gautham Narayan,et al.  TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED , 2010, 1011.5910.

[74]  M. Franx,et al.  A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr , 2009, Nature.

[75]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[76]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[77]  Las Cumbres Observatory Global Telescope Network,et al.  ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.

[78]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[79]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[80]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[81]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[82]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[83]  W. M. Wood-Vasey,et al.  TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED , 2009, 0908.0536.

[84]  S. Valenti,et al.  Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.

[85]  S. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[86]  M. Sullivan,et al.  K-Corrections and Spectral Templates of Type Ia Supernovae , 2007, astro-ph/0703529.

[87]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[88]  Massimo Della Valle,et al.  On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae , 2006, astro-ph/0612194.

[89]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[90]  A. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006, astro-ph/0612666.

[91]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[92]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005 .

[93]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[94]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[95]  A. S. Fruchter,et al.  Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves , 2001, astro-ph/0104382.

[96]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[97]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[98]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[99]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[100]  R. Smith,et al.  The morphology of type ia supernovae light curves , 1996, astro-ph/9609063.

[101]  J. C. Lee,et al.  Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35 , 1996, astro-ph/9608192.

[102]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[103]  A. Kim,et al.  A GENERALIZED K CORRECTION FOR TYPE IA SUPERNOVAE: COMPARING R-BAND PHOTOMETRY BEYOND Z=0.2 WITH B, V, AND R-BAND NEARBY PHOTOMETRY , 1995, astro-ph/9505024.

[104]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[105]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[106]  J. Kraus,et al.  Radio Spectra and Red Shifts of QSOs. , 1974 .