New Hermite-Hadamard type inequalities for exponentially convex functions and applications

The investigation of the proposed techniques is effective and convenient for solving the integrodifferential and difference equations. The present investigation depends on two highlights; the novel Hermite-Hadamard type inequalities for $\mathcal{K}$-conformable fractional integral operator in terms of a new parameter $\mathcal{K}>0$ and weighted version of Hermite-Hadamard type inequalities for exponentially convex functions in the classical sense. By using an integral identity together with the Holder-Iscan and improved power-mean inequality we establish several new inequalities for differentiable exponentially convex functions. This generalizes the Hadamard fractional integrals and Riemann-Liouville into a single form. Our contribution expands some innovative studies in this line. Moreover, two suitable examples are presented to demonstrate the novelty of the results established, the first one about the contributions of the modified Bessel functions and the other is about $\sigma$-digamma function. Finally, various applications for some special means as arithmetic, geometric and logarithmic are given.

[1]  Awais Gul Khan,et al.  Bounds for the Remainder in Simpson’s Inequality vian-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals , 2020 .

[2]  M. Noor,et al.  Estimates of quantum bounds pertaining to new q-integral identity with applications , 2020, Advances in Differential Equations.

[3]  Y. Chu,et al.  On some refinements for inequalities involving zero-balanced hypergeometric function , 2020 .

[4]  M. Noor,et al.  Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order , 2020, Journal of Function Spaces.

[5]  Y. Chu,et al.  On some fractional integral inequalities for generalized strongly modified $h$-convex functions , 2020, AIMS Mathematics.

[6]  S. Mehmood,et al.  Fractional Hadamard and Fejér-Hadamard Inequalities Associated with Exponentially s,m-Convex Functions , 2020 .

[7]  T. Abdeljawad,et al.  Some new local fractional inequalities associated with generalized $(s,m)$-convex functions and applications , 2020, Advances in Difference Equations.

[8]  D. Baleanu,et al.  New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions , 2020 .

[9]  Y. Chu,et al.  Inequalities for the generalized weighted mean values of g-convex functions with applications , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[10]  Y. Chu,et al.  Revisiting the Hermite-Hadamard fractional integral inequality via a Green function , 2020 .

[11]  S. Mehmood,et al.  Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity , 2020, AIMS Mathematics.

[12]  Y. Chu,et al.  On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory , 2020, Journal of Function Spaces.

[13]  M. Noor,et al.  Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators , 2020, AIMS Mathematics.

[14]  Y. Chu,et al.  On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus , 2020, Journal of Function Spaces.

[15]  Y. Chu,et al.  Some generalized fractional integral Simpson’s type inequalities with applications , 2020, AIMS Mathematics.

[16]  T. Abdeljawad,et al.  On new fractional integral inequalities for p-convexity within interval-valued functions , 2020, Advances in Difference Equations.

[17]  Y. Chu,et al.  Better Approaches for n-Times Differentiable Convex Functions , 2020, Mathematics.

[18]  F. Jarad,et al.  New estimates considering the generalized proportional Hadamard fractional integral operators , 2020 .

[19]  Y. Chu,et al.  Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions , 2020 .

[20]  D. Baleanu,et al.  Generation of new fractional inequalities via n polynomials s-type convexity with applications , 2020, Advances in Difference Equations.

[21]  Y. Chu,et al.  Conformable fractional integral inequalities for GG- and GA-convex functions , 2020, AIMS Mathematics.

[22]  M. Noor,et al.  2D approximately reciprocal ρ-convex functions and associated integral inequalities , 2020 .

[23]  Y. Chu,et al.  A sharp double inequality involving generalized complete elliptic integral of the first kind , 2020 .

[24]  M. Noor,et al.  New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions , 2020, Journal of Inequalities and Applications.

[25]  F. Jarad,et al.  A Note on Reverse Minkowski Inequality via Generalized Proportional Fractional Integral Operator with respect to Another Function , 2020, Mathematical Problems in Engineering.

[26]  M. Noor,et al.  New weighted generalizations for differentiable exponentially convex mapping with application , 2020 .

[27]  F. Jarad,et al.  On Pólya–Szegö and Čebyšev type inequalities via generalized k-fractional integrals , 2020, Advances in Difference Equations.

[28]  Tie-hong Zhao,et al.  Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function , 2020 .

[29]  Y. Chu,et al.  Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[30]  M. Noor,et al.  Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions , 2020, AIMS Mathematics.

[31]  Y. Chu,et al.  Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind , 2020 .

[32]  Y. Chu,et al.  Petrović-Type Inequalities for Harmonic h-convex Functions , 2020 .

[33]  Xiaofeng Han,et al.  Dynamics analysis of a delayed virus model with two different transmission methods and treatments , 2020, Advances in Difference Equations.

[34]  H. Rafeiro,et al.  A note on the boundedness of sublinear operators on grand variable Herz spaces , 2020 .

[35]  Yu-Ming Chu,et al.  Hermite–Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications , 2019, Journal of Inequalities and Applications.

[36]  Taekyun Kim,et al.  Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[37]  Y. Chu,et al.  Association of Jensen’s inequality for s-convex function with Csiszár divergence , 2019, Journal of Inequalities and Applications.

[38]  I. Işcan New refinements for integral and sum forms of Hölder inequality , 2019, Journal of Inequalities and Applications.

[39]  Ruisheng Ran,et al.  Path-following and semismooth Newton methods for the variational inequality arising from two membranes problem , 2019, Journal of inequalities and applications.

[40]  D. Baleanu,et al.  On a new class of fractional operators , 2017 .

[41]  Liquan Mei,et al.  Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations , 2017, Advances in Difference Equations.

[42]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[43]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[44]  Yu-Ming Chu,et al.  Logarithmically Complete Monotonicity Properties Relating to the Gamma Function , 2011 .

[45]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[46]  Tadeusz Antczak,et al.  (p, r)-Invex Sets and Functions☆ , 2001 .

[47]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[48]  S. Bernstein,et al.  Sur les fonctions absolument monotones , 1929 .

[49]  Y. Chu,et al.  Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions , 2020, AIMS Mathematics.

[50]  M. Noor,et al.  Certain novel estimates within fractional calculus theory on time scales , 2020 .

[51]  Aqeel Ahmad Mughal,et al.  A variant of Jensen-type inequality and related results for harmonic convex functions , 2020 .

[52]  J. Pečarić,et al.  Refinements of Jensen’s and McShane’s inequalities with applications , 2020, AIMS Mathematics.

[53]  Zhen-Hang Yang,et al.  Notes on the complete elliptic integral of the first kind , 2020 .

[54]  Y. Chu,et al.  Asymptotic expansion and bounds for complete elliptic integrals , 2020 .

[55]  Zhen-Hang Yang,et al.  Sharp rational bounds for the gamma function , 2020 .

[56]  Y. Chu,et al.  Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind , 2020, Applicable Analysis and Discrete Mathematics.

[57]  Y. Chu,et al.  Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means , 2019, Miskolc Mathematical Notes.

[58]  S. Dragomir,et al.  Some Hermite-Hadamard type inequalities for functions whose exponentials are convex , 2015 .

[59]  Anatoly A. Kilbas,et al.  HADAMARD-TYPE FRACTIONAL CALCULUS , 2001 .

[60]  S. Hanai A note on generalized convex functions , 1945 .

[61]  J. Hadamard,et al.  Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann , 1893 .