Optimal Weighted Recombination

Weighted recombination is a means for improving the local search performance of evolution strategies. It aims to make effective use of the information available, without significantly increasing computational costs per time step. In this paper, the potential speed-up resulting from using rank-based weighted recombination is investigated. Optimal weights are computed for the sphere model, and comparisons with the performance of strategies that do not make use of weighted recombination are presented. It is seen that unlike strategies that rely on unweighted recombination and truncation selection, weighted multirecombination evolution strategies are able to improve on the serial efficiency of the (1+1)-ES on the sphere. The implications of the use of weighted recombination for noisy optimization are studied, and parallels to the use of rescaled mutations are drawn. The cumulative step length adaptation mechanism is formulated for the case of an optimally weighted evolution strategy, and its performance is analyzed.

[1]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[2]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[3]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[4]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[5]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[6]  Hans-Georg Beyer,et al.  Local performance of the (1 + 1)-ES in a noisy environment , 2002, IEEE Trans. Evol. Comput..

[7]  Hans-Georg Beyer,et al.  On the Asymptotic Behavior of Multirecombinant Evolution Strategies , 1996, PPSN.

[8]  Nikolaus Hansen,et al.  Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie , 1998 .

[9]  Hans-Georg Beyer,et al.  A Comparison of Evolution Strategies with Other Direct Search Methods in the Presence of Noise , 2003, Comput. Optim. Appl..

[10]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[11]  Hans-Georg Beyer Mutate Large, But Inherit Small! On the Analysis of Rescaled Mutations in 1-lambda-ES with Noisy Fitness Data , 1998, PPSN.

[12]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[13]  Petros Koumoutsakos,et al.  Learning Probability Distributions in Continuous Evolutionary Algorithms - a Comparative Review , 2004, Nat. Comput..

[14]  Haikady N. Nagaraja,et al.  18 Concomitants of order statistics , 1998, Order statistics.

[15]  Ralf Salomon,et al.  Evolutionary algorithms and gradient search: similarities and differences , 1998, IEEE Trans. Evol. Comput..

[16]  H. Beyer,et al.  Noisy Local Optimization with Evolution Strategies , 2002 .

[17]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[18]  Nikolaus Hansen,et al.  Step-Size Adaption Based on Non-Local Use of Selection Information , 1994, PPSN.

[19]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[20]  Hans-Georg Beyer,et al.  Performance analysis of evolutionary optimization with cumulative step length adaptation , 2004, IEEE Transactions on Automatic Control.

[21]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[22]  Hans-Georg Beyer,et al.  Performance analysis of evolution strategies with multi-recombination in high-dimensional RN-search spaces disturbed by noise , 2002, Theor. Comput. Sci..

[23]  Hans-Georg Beyer,et al.  Local Performance of the (μ/μ, μ)-ES in a Noisy Environment , 2000, FOGA.

[24]  Calyampudi R. Rao,et al.  1 Order statistics: An introduction , 1998, Order statistics.

[25]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[26]  Dirk V. Arnold,et al.  An analysis of evolutionary gradient search , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[27]  H.-G. Beyer,et al.  Mutate large, but inherit small ! On the analysis of rescaled mutations in (1, λ)-ES with noisy fitness data , 1998 .