High-performance surface-micromachined inchworm actuator

This work demonstrates a polycrystalline silicon surface-micromachined inchworm actuator that exhibits high-performance characteristics such as large force (/spl plusmn/0.5 millinewtons), large velocity range (0 to /spl plusmn/4.4 mm/sec), large displacement range (/spl plusmn/100 microns), small step size (/spl plusmn/10, /spl plusmn/40 or /spl plusmn/100 nanometers), low power consumption (nanojoules per cycle), continuous bidirectional operation and relatively small area (600 /spl times/ 200/spl mu/m/sup 2/). An in situ load spring calibrated on a logarithmic scale from micronewtons to millinewtons, optical microscopy and Michelson interferometry are used to characterize its performance. The actuator consists of a force-amplifying plate that spans two voltage-controlled clamps, and walking is achieved by appropriately sequencing signals to these three components. In the clamps, normal force is borne by equipotential rubbing counterfaces, enabling friction to be measured against load. Using different monolayer coatings, we show that the static coefficient of friction can be changed from 0.14 to 1.04, and that it is load-independent over a broad range. We further find that the static coefficient of friction does not accurately predict the force generated by the actuator and attribute this to nanometer-scale presliding tangential deflections.

[1]  Victor M. Bright,et al.  Nanometer precision positioning robots utilizing optimized scratch drive actuators , 2001 .

[2]  J. S. Courtney‐Pratt,et al.  The effect of a tangential force on the contact of metallic bodies , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  John I. McCool,et al.  Comparison of models for the contact of rough surfaces , 1986 .

[4]  Jeremy A. Walraven,et al.  Characterization of an inchworm actuator fabricated by polysilicon surface micromachining , 2001, SPIE MOEMS-MEMS.

[5]  Satoshi Konishi,et al.  Parallel Linear Actuator System with High Accuracy and Large Stroke , 2002 .

[6]  Tetsuzo Hatazawa,et al.  Micro-displacement Characteristics under Tangential Force , 2000 .

[7]  K. Pister,et al.  Single mask, large force, and large displacement electrostatic linear inchworm motors , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[8]  Roger T. Howe,et al.  Alkene Based Monolayer Films As Anti Stiction Coatings For Polysilicon MEMS , 2001 .

[9]  T. Baumberger,et al.  Shear stiffness of a solid–solid multicontact interface , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[11]  K. Pister,et al.  Single mask, large force, and large displacement electrostatic linear inchworm motors , 2002 .

[12]  A. Cowley,et al.  Experimental Study of Normal and Shear Characteristics of Machined Surfaces in Contact , 1978 .

[13]  T. Michalske,et al.  Chemical vapor deposition of fluoroalkylsilane monolayer films for adhesion control in microelectromechanical systems , 2000 .

[14]  Maarten P. de Boer,et al.  The impact of solution agglomeration on the deposition of self-assembled monolayers , 2000 .

[15]  R. Howe,et al.  Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines , 1998 .

[16]  W. R. Ashurst,et al.  Evidence for pre-sliding tangential deflections in MEMS friction , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[17]  Louay A. Eldada,et al.  Advances in telecom and datacom optical components , 2001 .

[18]  Brian D. Jensen,et al.  Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS , 2001 .

[19]  R. Howe,et al.  Lubrication of polysilicon micromechanisms with self-assembled monolayers , 1998 .

[20]  J. Sniegowski,et al.  IC-Compatible Polysilicon Surface Micromachining , 2000 .

[21]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[22]  Miko Elwenspoek,et al.  Modeling, design and testing of the electrostatic shuffle motor , 1998 .

[23]  Alex David Corwin,et al.  Effect of adhesion on dynamic and static friction in surface micromachining , 2004 .

[24]  Hiroyuki Fujita,et al.  Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS , 1997 .

[25]  D. Follstaedt,et al.  Finite Element Modeling of Nanoindentation Measurements of Crystalline and Amorphous Si , 2000 .

[26]  S. Goodwin-Johansson,et al.  Intracardiac ultrasound scanner using a micromachine (MEMS) actuator , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  Hiroyuki Fujita,et al.  A micromachined impact microactuator driven by electrostatic force , 2003 .

[28]  Dürig,et al.  The “ Millipede ” — More than one thousand tips for future AFM data storage , 2000 .

[29]  Michael B. Sinclair,et al.  Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams , 2002 .

[30]  T. Michalske,et al.  Adhesion of polysilicon microbeams in controlled humidity ambients , 1998 .

[31]  Maarten P. de Boer,et al.  A hinged-pad test structure for sliding friction measurement in micromachining , 1998, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[32]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  Terunobu Akiyama,et al.  Controlled stepwise motion in polysilicon microstructures , 1993 .

[34]  Jong Hyun Lee,et al.  Characterization of a micromachined inchworm motor with thermoelastic linkage actuators , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[35]  R. Maboudian,et al.  Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlorosilane self-assembled monolayer , 2001 .

[36]  Victor M. Bright,et al.  Applications for surface-micromachined polysilicon thermal actuators and arrays , 1997 .

[37]  R. Maboudian,et al.  Wafer level anti-stiction coatings for MEMS , 2003 .