A Gentle Introduction to the Kernel Distance

This document reviews the definition of the kernel distance, providing a gentle introduction tailored to a reader with background in theoretical computer science, but limited exposure to technology more common to machine learning, functional analysis and geometric measure theory. The key aspect of the kernel distance developed here is its interpretation as an L2 distance between probability measures or various shapes (e.g. point sets, curves, surfaces) embedded in a vector space (specifically an RKHS). This structure enables several elegant and efficient solutions to data analysis problems. We conclude with a glimpse into the mathematical underpinnings of this measure, highlighting its recent independent evolution in two separate fields.

[1]  Matthias Hein,et al.  Hilbertian Metrics and Positive Definite Kernels on Probability Measures , 2005, AISTATS.

[2]  S. Joshi,et al.  Template estimation form unlabeled point set data and surfaces for Computational Anatomy , 2006 .

[3]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[4]  Baver Okutmustur Reproducing kernel Hilbert spaces , 2005 .

[5]  Alain Trouvé,et al.  Measuring Brain Variability Via Sulcal Lines Registration: A Diffeomorphic Approach , 2007, MICCAI.

[6]  Alain Trouvé,et al.  Sparse Approximation of Currents for Statistics on Curves and Surfaces , 2008, MICCAI.

[7]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[8]  C. Suquet Distances euclidiennes sur les mesures signées et application à des théorèmes de Berry-Esséen , 1995 .

[9]  Suresh Venkatasubramanian,et al.  Spatially-Aware Comparison and Consensus for Clusterings , 2011, SDM.

[10]  Suresh Venkatasubramanian,et al.  Comparing distributions and shapes using the kernel distance , 2010, SoCG '11.

[11]  Joan Alexis Glaunès Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique , 2005 .

[12]  L. Rosasco,et al.  Reproducing kernel Hilbert spaces , 2019, High-Dimensional Statistics.

[13]  Suresh Venkatasubramanian,et al.  Matching Shapes Using the Current Distance , 2010, ArXiv.

[14]  Hal Daumé From Zero to Reproducing Kernel Hilbert Spaces in Twelve Pages or Less , 2006 .

[15]  A. Müller Integral Probability Metrics and Their Generating Classes of Functions , 1997, Advances in Applied Probability.

[16]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[17]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[18]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[19]  Saburou Saitoh,et al.  Theory of Reproducing Kernels and Its Applications , 1988 .