Security Weaknesses in Arbitrated Quantum Signature Protocols

Arbitrated quantum signature (AQS) is a cryptographic scenario in which the sender (signer), Alice, generates the signature of a message and then a receiver (verifier), Bob, can verify the signature with the help of a trusted arbitrator, Trent. In this paper, we point out there exist some security weaknesses in two AQS protocols. Our analysis shows Alice can successfully disavow any of her signatures by a simple attack in the first protocol. Furthermore, we study the security weaknesses of the second protocol from the aspects of forgery and disavowal. Some potential improvements of this kind of protocols are given. We also design a new method to authenticate a signature or a message, which makes AQS protocols immune to Alice’s disavowal attack and Bob’s forgery attack effectively.

[1]  Wen Qiao-Yan,et al.  Cryptanalysis of the arbitrated quantum signature protocols , 2011 .

[2]  Weizhong Zhao,et al.  On the security of arbitrated quantum signature schemes , 2012, 1205.3265.

[3]  Dowon Hong,et al.  Security problem on arbitrated quantum signature schemes , 2011 .

[4]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[5]  Fen-Zhuo Guo,et al.  Consistency of shared reference frames should be reexamined , 2008 .

[6]  Qin Li,et al.  Efficient arbitrated quantum signature and its proof of security , 2013, Quantum Inf. Process..

[7]  Qiaoyan Wen,et al.  Security of a kind of quantum secret sharing with single photons , 2011, Quantum Inf. Comput..

[8]  Zhiwei Sun,et al.  Improving the security of arbitrated quantum signature protocols , 2011 .

[9]  Tian-Yin Wang,et al.  Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements , 2011 .

[10]  Qiao-Yan Wen,et al.  Comment on "experimental demonstration of a quantum protocol for Byzantine agreement and liar detection". , 2008, Physical review letters.

[11]  Wei-Wei Zhang,et al.  Improving the security of arbitrated quantum signature against the forgery attack , 2013, Quantum Inf. Process..

[12]  Howard Barnum,et al.  Quantum message authentication codes , 2001, quant-ph/0103123.

[13]  Leonid Reyzin,et al.  Better than BiBa: Short One-Time Signatures with Fast Signing and Verifying , 2002, ACISP.

[14]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .

[15]  Daowen Qiu,et al.  Security analysis and improvements of arbitrated quantum signature schemes , 2010 .

[16]  Colloidal interactions and transport in nematic liquid crystals. , 2007, Physical review letters.

[17]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[18]  Adam D. Smith,et al.  Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[19]  Nguyen Ba An Quantum exam , 2006 .

[20]  Qiaoyan Wen,et al.  Participant attack on a kind of MQSS schemes based on entanglement swapping , 2010 .

[21]  Tzonelih Hwang,et al.  Comment on “Security analysis and improvements of arbitrated quantum signature schemes” , 2011, 1105.1232.

[22]  Wen Qiao-Yan,et al.  A Special Eavesdropping on One-Sender Versus N-Receiver QSDC Protocol , 2008 .

[23]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[24]  Dongyang Long,et al.  ENTANGLEMENT ENHANCES THE SECURITY OF ARBITRATED QUANTUM SIGNATURE , 2009 .

[25]  Wen Qiao-Yan,et al.  Teleportation attack on the QSDC protocol with a random basis and order , 2008 .

[26]  Tian-Yin Wang,et al.  Cryptanalysis of dynamic quantum secret sharing , 2013, Quantum Inf. Process..

[27]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[28]  Debbie W. Leung,et al.  Quantum vernam cipher , 2000, Quantum Inf. Comput..

[29]  Qiaoyan Wen,et al.  Improving the security of multiparty quantum secret sharing against an attack with a fake signal , 2006 .

[30]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[31]  N. Lutkenhaus,et al.  Comment on ``Arbitrated quantum-signature scheme'' , 2008, 0806.0854.

[32]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[33]  Su-Juan Qin,et al.  Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state , 2010 .

[34]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[35]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[36]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[37]  Fei Gao,et al.  Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols , 2010, IEEE Journal of Quantum Electronics.

[38]  Huijuan Zuo,et al.  Cryptanalysis and Improvement of a Multi-User Quantum Communication Network Using χ-Type Entangled States , 2012, International Journal of Theoretical Physics.

[39]  Qiaoyan Wen,et al.  Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174] , 2007 .