Telomere dysfunction provokes regional amplification and deletion in cancer genomes.

[1]  P. Armitage,et al.  The Age Distribution of Cancer and a Multi-stage Theory of Carcinogenesis , 1954, British Journal of Cancer.

[2]  J. Murnane,et al.  Chromosome Instability as a Result of Double-Strand Breaks near Telomeres in Mouse Embryonic Stem Cells , 2002, Molecular and Cellular Biology.

[3]  H. Korswagen,et al.  Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction. , 2002, Genes & development.

[4]  M. Lieber,et al.  Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants , 2002, Current Biology.

[5]  S. Chae,et al.  Coexpression of MUC1 with p53 or MUC2 correlates with lymph node metastasis in colorectal carcinomas. , 2002, Journal of Korean medical science.

[6]  S. Friedman,et al.  KLF6, a Candidate Tumor Suppressor Gene Mutated in Prostate Cancer , 2001, Science.

[7]  L. Chin,et al.  Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions. , 2001, Molecular cell.

[8]  P. Jeggo,et al.  DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. , 2001, Molecular cell.

[9]  C. Lengauer How do tumors make ends meet? , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Magrane,et al.  Selective Inactivation of p53 Facilitates Mouse Epithelial Tumor Progression without Chromosomal Instability , 2001, Molecular and Cellular Biology.

[11]  E. Marbán,et al.  Krüppel-like Factor 4 (Gut-enriched Krüppel-like Factor) Inhibits Cell Proliferation by Blocking G1/S Progression of the Cell Cycle* , 2001, The Journal of Biological Chemistry.

[12]  Channing S. Mahatan,et al.  Expression of the gut-enriched Krüppel-like factor (Krüppel-like factor 4) gene in the human colon cancer cell line RKO is dependent on CDX2 , 2001, Oncogene.

[13]  R. Abseher,et al.  Identification of a novel gene, CDCP1, overexpressed in human colorectal cancer , 2001, Oncogene.

[14]  R. DePinho,et al.  Telomere dysfunction and evolution of intestinal carcinoma in mice and humans , 2001, Nature Genetics.

[15]  R. Berkowitz,et al.  Whole genome amplification and high-throughput allelotyping identified five distinct deletion regions on chromosomes 5 and 6 in microdissected early-stage ovarian tumors. , 2001, Cancer research.

[16]  R. Benezra,et al.  Mitotic checkpoints: from yeast to cancer. , 2001, Current opinion in genetics & development.

[17]  Joe W. Gray,et al.  Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas , 2001, Nature Genetics.

[18]  Ronald A. DePinho,et al.  The age of cancer , 2000, Nature.

[19]  Lynda Chin,et al.  Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice , 2000, Nature.

[20]  Z. Y. Chen,et al.  Gut-enriched Krüppel-like factor represses cyclin D1 promoter activity through Sp1 motif. , 2000, Nucleic acids research.

[21]  C. Yue,et al.  Genome-wide search for loss of heterozygosity using laser capture microdissected tissue of breast carcinoma: an implication for mutator phenotype and breast cancer pathogenesis. , 2000, Cancer research.

[22]  I. Wistuba,et al.  Comparative genomic hybridization reveals complex genetic changes in primary breast cancer tumors and their cell lines. , 2000, Cancer genetics and cytogenetics.

[23]  Karsten Schlüns,et al.  Patterns of chromosomal imbalances in invasive breast cancer , 2000, International journal of cancer.

[24]  L. Nagarajan,et al.  Deletions of chromosome 5q13.3 and 17p loci cooperate in myeloid neoplasms. , 2000, Blood.

[25]  Johannes Zuber,et al.  A genome-wide survey of RAS transformation targets , 2000, Nature Genetics.

[26]  M. Lieber,et al.  The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts , 1999, Current Biology.

[27]  C. Theillet,et al.  17q21-q25 aberrations in breast cancer: combined allelotyping and CGH analysis reveals 5 regions of allelic imbalance among which two correspond to DNA amplification , 1999, Oncogene.

[28]  P. Drew,et al.  Genetic changes associated with telomerase activity in breast cancer , 1999, International journal of cancer.

[29]  Lynda Chin,et al.  p53 Deficiency Rescues the Adverse Effects of Telomere Loss and Cooperates with Telomere Dysfunction to Accelerate Carcinogenesis , 1999, Cell.

[30]  G. Dianov,et al.  Oxidative DNA damage processing in nuclear and mitochondrial DNA. , 1999, Biochimie.

[31]  G. Dianov,et al.  Oxidative DNA damage processing and changes with aging. , 1998, Toxicology letters.

[32]  L. Nagarajan,et al.  The unexplored 5q13 locus , 1998 .

[33]  P. Jaruga,et al.  Oxidative DNA base modifications as factors in carcinogenesis. , 1998, Acta biochimica Polonica.

[34]  L. Nagarajan,et al.  The unexplored 5q13 locus: a role in hematopoietic malignancies. , 1998, Leukemia & lymphoma.

[35]  A. Coquelle,et al.  Interstitial deletions and intrachromosomal amplification initiated from a double‐strand break targeted to a mammalian chromosome , 1998, The EMBO journal.

[36]  H Nojima,et al.  Cell cycle checkpoints, chromosome stability and the progression of cancer. , 1997, Human cell.

[37]  Stephen J. Elledge,et al.  Cell Cycle Checkpoints: Preventing an Identity Crisis , 1996, Science.

[38]  H. Liang,et al.  Translocations and deletions of 5q13.1 in myelodysplasia and acute myelogenous leukemia: evidence for a novel critical locus. , 1996, Blood.

[39]  H. Varmus,et al.  Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation , 1996, Molecular and cellular biology.

[40]  R. Verma,et al.  A new trans,location, t(5;21)(g13;q22) in acute myelogenousc leukemia , 1996 .

[41]  S. Gallinger,et al.  Telomerase activity associated with acquisition of malignancy in human colorectal cancer. , 1995, Cancer research.

[42]  C. Greider,et al.  Developmental and tissue-specific regulation of mouse telomerase and telomere length. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Gagos,et al.  Chromosomal markers associated with metastasis in two colon cancer cell lines established from the same patient. , 1995, Anticancer research.

[44]  T. Bauknecht,et al.  Recurrent cytogenetic aberrations in human ovarian carcinomas. , 1995, Cancer detection and prevention.

[45]  A. Murray,et al.  Cell Cycle Checkpoints , 2021, Encyclopedia of Molecular Pharmacology.

[46]  L. Hartmann,et al.  Cytogenetic studies of epithelial ovarian carcinoma. , 1993, Cancer genetics and cytogenetics.

[47]  F. Mitelman,et al.  Mapping of the 19p13 breakpoint in an ovarian carcinoma between the INSR and TCF3 Loci , 1993, Genes, chromosomes & cancer.

[48]  R. Zarbo,et al.  Clonal cytogenetic evolution in a squamous cell carcinoma of the skin from a xeroderma pigmentosum patient , 1993, Genes, chromosomes & cancer.

[49]  M Kimmel,et al.  A branching process model of gene amplification following chromosome breakage. , 1992, Mutation research.

[50]  J. Steitz,et al.  Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. , 1992, The EMBO journal.

[51]  M. Fox,et al.  Possibly identical marker chromosome der(16)t(?13;16)(?q13or14;q22) in a squamous cell carcinoma of the skin and larynx. , 1992, Cancer genetics and cytogenetics.

[52]  G. Wahl,et al.  A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. , 1991, Genes & development.

[53]  D. Kipling,et al.  Hypervariable ultra-long telomeres in mice , 1990, Nature.

[54]  Robin C. Allshire,et al.  Telomere reduction in human colorectal carcinoma and with ageing , 1990, Nature.

[55]  R. Reiss,et al.  Familial fragile 8q22 involved as a cancer breakpoint in cells of a large bowel tumor. , 1988, Cancer genetics and cytogenetics.