The shorter queue polling model

We consider a two-queue polling model in which customers upon arrival join the shorter of two queues. Customers arrive according to a Poisson process and the service times in both queues are independent and identically distributed random variables having the exponential distribution. The two-dimensional process of the numbers of customers at the queue where the server is and at the other queue is a two-dimensional Markov process. We derive its equilibrium distribution using two methodologies: the compensation approach and a reduction to a boundary value problem.

[1]  Ijbf Ivo Adan,et al.  A compensation approach for queueing problems , 1991 .

[2]  Philippe Jacquet,et al.  Analysis of a stack algorithm for CSMA-CD random length packet communication , 1990, IEEE Trans. Inf. Theory.

[3]  Robert D. van der Mei,et al.  Applications of polling systems , 2011, ArXiv.

[4]  Richard F. Serfozo,et al.  Optimality of routing and servicing in dependent parallel processing systems , 1991, Queueing Syst. Theory Appl..

[5]  Ronald Rietman,et al.  The M/M/1 queue with gated random order of service , 2002 .

[6]  Moshe Sidi,et al.  Polling systems: applications, modeling, and optimization , 1990, IEEE Trans. Commun..

[7]  A. Hordijk,et al.  Constrained admission control to a queueing system , 1989, Advances in Applied Probability.

[8]  J. Kingman Two Similar Queues in Parallel , 1961 .

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[10]  Hideaki Takagi,et al.  Analysis and Application of Polling Models , 2000, Performance Evaluation.

[11]  Namyoon Lee,et al.  Optimal routing in two-queue polling systems , 2016, J. Appl. Probab..

[12]  D. J. Houck,et al.  Comparison of Policies for Routing Customers to Parallel Queueing Systems , 1987, Oper. Res..

[13]  F. G. Foster On the Stochastic Matrices Associated with Certain Queuing Processes , 1953 .

[14]  Onno Boxma,et al.  Boundary value problems in queueing system analysis , 1983 .

[15]  Ger Koole,et al.  On the Optimality of the Generalized Shortest Queue Policy , 1990, Probability in the Engineering and Informational Sciences.

[16]  D. Mitra,et al.  Editorial Introduction: Special Issue on Communication Systems. , 1991 .

[17]  J. Cohen Analysis of the asymmetrical shortest two-server queueing model , 1995 .

[18]  Ward Whitt,et al.  Deciding Which Queue to Join: Some Counterexamples , 1986, Oper. Res..

[19]  Eitan Altman,et al.  On optimal call admission control in resource-sharing system , 2001, IEEE Trans. Commun..

[20]  H. McKean,et al.  Two queues in parallel , 1977 .

[21]  Micha Hofri,et al.  On a functional equation arising in the analysis of a protocol for a multi-access broadcast channel , 1986 .

[22]  Charles Knessl,et al.  On the Shortest Queue Version of the Erlang Loss Model , 2008 .

[23]  Charles Knessl,et al.  ON THE INFINITE SERVER SHORTEST QUEUE PROBLEM: SYMMETRIC CASE , 2005 .

[24]  Whm Henk Zijm,et al.  A compensation approach for two-dimensional Markov processes , 1993, Advances in Applied Probability.

[25]  Johan van Leeuwaarden,et al.  Erlang arrivals joining the shorter queue , 2013, Queueing Syst. Theory Appl..

[26]  D. McDonald,et al.  Join the shortest queue: stability and exact asymptotics , 2001 .

[27]  Ivo J. B. F. Adan,et al.  Analysis of the symmetric shortest queue problem , 1990 .

[28]  Ben Atkinson,et al.  A Compensation Approach for Queueing Problems. , 1996 .

[29]  G. Fayolle,et al.  Random Walks in the Quarter Plane: Algebraic Methods, Boundary Value Problems, Applications to Queueing Systems and Analytic Combinatorics , 2018 .

[30]  Tapani Lehtonen,et al.  On the optimality of the shortest line discipline , 1984 .

[31]  Jacques Resing,et al.  Polling systems and multitype branching processes , 1993, Queueing Syst. Theory Appl..

[32]  G. Fayolle,et al.  Random Walks in the Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications , 1999 .

[33]  G. Fayolle,et al.  Two coupled processors: The reduction to a Riemann-Hilbert problem , 1979 .

[34]  Hui Li,et al.  Geometric Decay in a QBD Process with Countable Background States with Applications to a Join-the-Shortest-Queue Model , 2007 .

[35]  Onno Boxma,et al.  The Compensation Approach Applied to a 2 × 2 Switch , 1993, Probability in the Engineering and Informational Sciences.

[36]  Charles M. Grinstead,et al.  Introduction to probability , 1986, Statistics for the Behavioural Sciences.

[37]  Jr. Shaler Stidham Optimal control of admission to a queueing system , 1985 .

[38]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[39]  Shaler Stidham,et al.  A survey of Markov decision models for control of networks of queues , 1993, Queueing Syst. Theory Appl..

[40]  Hans Blanc Bad Luck When Joining the Shortest Queue , 2008 .

[41]  Ivo J. B. F. Adan,et al.  Queueing Models with Multiple Waiting Lines , 2001, Queueing Syst. Theory Appl..

[42]  V. M. Vishnevskii,et al.  Mathematical methods to study the polling systems , 2006 .

[43]  Jr. Shaler Stidham Optimal Design of Queueing Systems , 2009 .

[44]  Hideaki Takagi,et al.  Application of Polling Models to Computer Networks , 1991, Comput. Networks ISDN Syst..

[45]  Shlomo Halfin The shortest queue problem , 1985 .

[46]  W. Whitt,et al.  Analysis of join-the-shortest-queue routing for web server farms , 2007, Perform. Evaluation.

[47]  Ronald Menich,et al.  Optimally of shortest queue routing for dependent service stations , 1987, 26th IEEE Conference on Decision and Control.

[48]  U. Yechiali Customers' Optimal Joining Rules for the GI/M/s Queue , 1972 .

[49]  Ivo J. B. F. Adan,et al.  Shortest expected delay routing for Erlang servers , 1996, Queueing Syst. Theory Appl..