Neural-network-designed pulse sequences for robust control of singlet-Triplet qubits

Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubits; while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line-shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques, in developing pulse sequences for universal fault-tolerant quantum computation.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[4]  S. Das Sarma,et al.  Randomized Benchmarking of Barrier versus Tilt Control of a Singlet-Triplet Qubit. , 2017, Physical review letters.

[5]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[6]  Yi Zhang,et al.  Quantum Loop Topography for Machine Learning. , 2016, Physical review letters.

[7]  Yang Qi,et al.  Self-learning Monte Carlo method , 2016, 1610.03137.

[8]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[9]  R. Melko,et al.  Machine Learning Phases of Strongly Correlated Fermions , 2016, Physical Review X.

[10]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[11]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[12]  K. Aoki,et al.  Restricted Boltzmann machines for the long range Ising models , 2016, 1701.00246.

[13]  D. E. Savage,et al.  Extending the coherence of a quantum dot hybrid qubit , 2016, 1611.04945.

[14]  Saeed Fallahi,et al.  High-fidelity entangling gate for double-quantum-dot spin qubits , 2016, 1608.04258.

[15]  Gautam Reddy,et al.  Learning to soar in turbulent environments , 2016, Proceedings of the National Academy of Sciences.

[16]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[17]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[18]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[19]  Mark A. Eriksson,et al.  Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet , 2016, Proceedings of the National Academy of Sciences.

[20]  Xu-Chen Yang,et al.  Noise filtering of composite pulses for singlet-triplet qubits , 2016, Scientific reports.

[21]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[22]  Sergei V. Kalinin,et al.  Big-deep-smart data in imaging for guiding materials design. , 2015, Nature materials.

[23]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[24]  Andrea J. Liu,et al.  A structural approach to relaxation in glassy liquids , 2015, Nature Physics.

[25]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[26]  D. E. Savage,et al.  High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit , 2015, npj Quantum Information.

[27]  S. Tarucha,et al.  Quantum Manipulation of Two-Electron Spin States in Isolated Double Quantum Dots. , 2014, Physical review letters.

[28]  Clement H. Wong,et al.  High-fidelity singlet-triplet S -T - qubits in inhomogeneous magnetic fields , 2014, 1410.2310.

[29]  Xin Wang,et al.  Improving the gate fidelity of capacitively coupled spin qubits , 2014, npj Quantum Information.

[30]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[31]  A. C. Doherty,et al.  Suppressing qubit dephasing using real-time Hamiltonian estimation , 2014, Nature Communications.

[32]  D. DiVincenzo,et al.  High-fidelity single-qubit gates for two-electron spin qubits in GaAs. , 2014, Physical review letters.

[33]  Zhan Shi,et al.  Two-axis control of a singlet–triplet qubit with an integrated micromagnet , 2014, Proceedings of the National Academy of Sciences.

[34]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[35]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[36]  Xin Wang,et al.  Robust quantum gates for singlet-triplet spin qubits using composite pulses , 2013, 1312.4523.

[37]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[38]  Jacob M. Taylor,et al.  Quantum-dot-based resonant exchange qubit. , 2013, Physical review letters.

[39]  John J. Oh,et al.  Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data , 2013, 1303.6984.

[40]  J. P. Dehollain,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[41]  Constantin Brif,et al.  Robust control of quantum gates via sequential convex programming , 2013, ArXiv.

[42]  Xin Wang,et al.  Noise-resistant control for a spin qubit array. , 2013, Physical review letters.

[43]  G. Giedke,et al.  Large nuclear spin polarization in gate-defined quantum dots using a single-domain nanomagnet. , 2012, Physical review letters.

[44]  Kaveh Khodjasteh,et al.  Automated Synthesis of Dynamically Corrected Quantum Gates , 2012 .

[45]  Edwin Barnes,et al.  Composite pulses for robust universal control of singlet–triplet qubits , 2012, Nature Communications.

[46]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[47]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[48]  Todd Green,et al.  High-order noise filtering in nontrivial quantum logic gates. , 2011, Physical review letters.

[49]  Xuedong Hu,et al.  Fast hybrid silicon double-quantum-dot qubit. , 2011, Physical review letters.

[50]  S. Tarucha,et al.  Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. , 2011, Physical review letters.

[51]  G. Ramon Electrically controlled quantum gates for two-spin qubits in two double quantum dots , 2011, 1107.2968.

[52]  H. Riemann,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[53]  S. Sarma,et al.  Impurity effects on semiconductor quantum bits in coupled quantum dots , 2011, 1103.0767.

[54]  Amir Yacoby,et al.  Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs , 2011 .

[55]  A. Gossard,et al.  Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. , 2010, Physical review letters.

[56]  Amir Yacoby,et al.  Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. , 2010, Physical review letters.

[57]  Daniel A. Lidar,et al.  Arbitrarily accurate dynamical control in open quantum systems. , 2009, Physical review letters.

[58]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[59]  Kaveh Khodjasteh,et al.  Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.

[60]  S. Das Sarma,et al.  Pure quantum dephasing of a solid-state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-mediated interactions , 2009, 0903.2256.

[61]  Jacob M. Taylor,et al.  Measurement of temporal correlations of the overhauser field in a double quantum dot. , 2007, Physical review letters.

[62]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[63]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[64]  R. Hanson,et al.  Universal set of quantum gates for double-dot spin qubits with fixed interdot coupling. , 2006, Physical review letters.

[65]  S. Das Sarma,et al.  Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. , 2005, Physical review letters.

[66]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[67]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[68]  J. Levy Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.

[69]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[70]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.