Recent progress in sulfide-based solid electrolytes for Li-ion batteries

Abstract Sulfide-based ionic conductors are one of most attractive solid electrolyte candidates for all-solid-state batteries. In this review, recent progress of sulfide-based solid electrolytes is described from point of view of structure. In particular, lithium thio-phosphates such as Li7P3S11, Li10GeP2S12 and Li11Si2PS12 etc. exhibit extremely high ionic conductivity of over 10−2 S cm−1 at room temperature, even higher than those of commercial organic carbonate electrolytes. The relationship between structure and unprecedented high ionic conductivity is delineated; some potential drawbacks of these electrolytes are also outlined.

[1]  S. Skaarup,et al.  Ionic conductivity of pure and doped Li3N , 1983 .

[2]  T. Minami,et al.  Preparation of new glasses with high ionic conductivities , 1992 .

[3]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[4]  Sehee Lee,et al.  Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries , 2012 .

[5]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[6]  M. Wasiucionek,et al.  Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glasses , 2009 .

[7]  Shinzo Kohjiya,et al.  Solid State Ionics for Batteries , 2005 .

[8]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[9]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[10]  A. Hayashi,et al.  Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives , 2013, Journal of Materials Science.

[11]  Gholam-Abbas Nazri,et al.  Solid state batteries : materials design and optimization , 1994 .

[12]  M. Vithal,et al.  A wide-ranging review on Nasicon type materials , 2011 .

[13]  A. Hayashi,et al.  Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries , 2014 .

[14]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[15]  Fuminori Mizuno,et al.  High lithium ion conducting glass-ceramics in the system Li2S–P2S5 , 2006 .

[16]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[17]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[18]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[19]  A. Hayashi,et al.  Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling , 2013 .

[20]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[21]  Nancy J. Dudney,et al.  Rechargeable thin-film lithium batteries , 1994 .

[22]  A. Hayashi,et al.  Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles , 2013 .

[23]  John B. Goodenough,et al.  Review—Solid Electrolytes in Rechargeable Electrochemical Cells , 2015 .

[24]  Annie Pradel,et al.  Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching , 1986 .

[25]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[26]  T. Minami,et al.  Preparation of Li2S–P2S5 Amorphous Solid Electrolytes by Mechanical Milling , 2004 .

[27]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[28]  A. Pradel,et al.  The mixed glass former effect in twin-roller quenched lithium borophosphate glasses , 2012 .

[29]  A. Hayashi,et al.  All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling , 2013, Journal of Solid State Electrochemistry.

[30]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[31]  S. Ujiie,et al.  Preparation and ionic conductivity of (100−x)(0.8Li2S·0.2P2S5)·xLiI glass–ceramic electrolytes , 2013, Journal of Solid State Electrochemistry.

[32]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[33]  A. Hayashi,et al.  All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes , 2011 .

[34]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[35]  G. Sahu,et al.  An iodide-based Li7P2S8I superionic conductor. , 2015, Journal of the American Chemical Society.

[36]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[37]  Hirokazu Kitaura,et al.  Novel technique to form electrode-electrolyte nanointerface in all-solid-state rechargeable lithium batteries , 2008 .

[38]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[39]  M. Tatsumisago Glassy materials based on Li2S for all-solid-state lithium secondary batteries , 2004 .

[40]  A. Hayashi,et al.  Preparation and ionic conductivities of (100 − x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes , 2013 .

[41]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[42]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[43]  T. Minami,et al.  Mixed anion effect in conductivity of rapidly quenched Li4SiO4-Li3BO3 glasses , 1987 .

[44]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[45]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[46]  S. Ujiie,et al.  Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes , 2012 .

[47]  Alexander Kuhn,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[48]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[49]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[50]  N. J. Dudney,et al.  Solid-state thin-film rechargeable batteries , 2005 .

[51]  Masahiro Tatsumisago,et al.  Preparation and ionic conductivity of Li7P3S11 − z glass-ceramic electrolytes , 2010 .

[52]  J. Kennedy,et al.  Synthesis and characterization of the B2S3Li2S, the P2S5Li2S and the B2S3P2S5Li2S glass systems , 1990 .

[53]  Ashutosh Tiwari,et al.  Recent developments in garnet based solid state electrolytes for thin film batteries , 2014 .

[54]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[55]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[56]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[57]  M. Lanagan,et al.  Lithium Thiophosphate Glasses and Glass–Ceramics as Solid Electrolytes: Processing, Microstructure, and Properties , 2013 .

[58]  M. Tachez,et al.  Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 , 1984 .

[59]  R. Huggins,et al.  Phosphate materials for cathodes in lithium ion secondary batteries , 2005 .

[60]  Anthony R. West,et al.  Basic Solid State Chemistry , 1988 .