The influence of locomotion on sensory processing and its underlying neuronal circuits

Abstract Processing of sensory information can be modulated in both cortex and thalamus by behavioral context, such as locomotion. During active behaviors, coding of sensory stimuli and perception are improved, in particular during physical activity of moderate intensity. These locomotion-related modulations seem to arise from a combination of mechanisms, including neuromodulation, the recruitment of inhibitory interneurons, and specific top-down or motor-related inputs. The application of new experimental methods in mice during walking under head-fixation on treadmills made it possible to study the circuit and cellular basis underlying modulations by behavioral context with unprecedented detail. This article reviews the current state of these studies and highlights some important open questions.

[1]  M. Stryker,et al.  Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion , 2014, Neuron.

[2]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[3]  Javier Moya,et al.  Widespread Vestibular Activation of the Rodent Cortex , 2015, The Journal of Neuroscience.

[4]  Georg B. Keller,et al.  A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions , 2017, Neuron.

[5]  Jin U. Kang,et al.  Norepinephrine Controls Astroglial Responsiveness to Local Circuit Activity , 2014, Neuron.

[6]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[7]  H. Spitzer,et al.  Increased attention enhances both behavioral and neuronal performance. , 1988, Science.

[8]  C. Gilbert,et al.  Brain States: Top-Down Influences in Sensory Processing , 2007, Neuron.

[9]  George H. Denfield,et al.  Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness , 2014, Neuron.

[10]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[11]  Maiken Nedergaard,et al.  α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. , 2013, Cell calcium.

[12]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[13]  Franck P. Martial,et al.  Modulation of Fast Narrowband Oscillations in the Mouse Retina and dLGN According to Background Light Intensity , 2017, Neuron.

[14]  Harvey A Swadlow,et al.  Brain state and contrast sensitivity in the awake visual thalamus , 2006, Nature Neuroscience.

[15]  S. Rose Selective attention , 1992, Nature.

[16]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[17]  Maik C. Stüttgen,et al.  The Head-fixed Behaving Rat—Procedures and Pitfalls , 2010, Somatosensory & motor research.

[18]  M. Carandini,et al.  Normalization as a canonical neural computation , 2013, Nature Reviews Neuroscience.

[19]  Gaby Maimon Modulation of visual physiology by behavioral state in monkeys, mice, and flies , 2011, Current Opinion in Neurobiology.

[20]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[21]  Mriganka Sur,et al.  An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity , 2015, Nature Neuroscience.

[22]  Stephen V. David,et al.  Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection , 2015, Neuron.

[23]  Jochen F. Staiger,et al.  Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences , 2015, Cerebral cortex.

[24]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[25]  Ovidiu F. Jurjuţ,et al.  Effects of Locomotion Extend throughout the Mouse Early Visual System , 2014, Current Biology.

[26]  Demetris K. Roumis,et al.  Functional Specialization of Mouse Higher Visual Cortical Areas , 2011, Neuron.

[27]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[28]  E. Pugh,et al.  Extreme responsiveness of the pupil of the dark-adapted mouse to steady retinal illumination. , 1998, Investigative ophthalmology & visual science.

[29]  M. Carandini,et al.  Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex , 2016, Neuron.

[30]  M. Vinck,et al.  Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding , 2014, bioRxiv.

[31]  R. Clay Reid,et al.  Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms , 2013, Neuron.

[32]  Hillel Adesnik,et al.  A direct translaminar inhibitory circuit tunes cortical output , 2015, Nature Neuroscience.

[33]  R. Borke,et al.  The Thalamic Nuclei , 1972 .

[34]  R. Mooney,et al.  A synaptic and circuit basis for corollary discharge in the auditory cortex , 2014, Nature.

[35]  P. Andersen,et al.  Association between brain temperature and dentate field potentials in exploring and swimming rats. , 1993, Science.

[36]  Barbara G. Shinn-Cunningham,et al.  Locomotion and Task Demands Differentially Modulate Thalamic Audiovisual Processing during Active Search , 2015, Current Biology.

[37]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[38]  Georg B. Keller,et al.  Mismatch Receptive Fields in Mouse Visual Cortex , 2016, Neuron.

[39]  Hassana K. Oyibo,et al.  Experience-dependent spatial expectations in mouse visual cortex , 2016, Nature Neuroscience.

[40]  J. Poulet,et al.  Thalamic control of cortical states , 2012, Nature Neuroscience.

[41]  Grace W. Lindsay,et al.  Parallel processing by cortical inhibition enables context-dependent behavior , 2016, Nature Neuroscience.

[42]  S. Laughlin Retinal information capacity and the function of the pupil , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[43]  John Joseph Valletta,et al.  Applications of machine learning in animal behaviour studies , 2017, Animal Behaviour.

[44]  J. Bradshaw,et al.  Pupil Size as a Measure of Arousal during Information Processing , 1967, Nature.

[45]  Weiwei Chen,et al.  Virtual Reality system for freely-moving rodents , 2017, bioRxiv.

[46]  W. Krieg Functional Neuroanatomy , 1953, Springer Series in Experimental Entomology.

[47]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[48]  M. Carandini,et al.  Integration of visual motion and locomotion in mouse visual cortex , 2013, Nature Neuroscience.

[49]  Shihab A Shamma,et al.  Task reward structure shapes rapid receptive field plasticity in auditory cortex , 2012, Proceedings of the National Academy of Sciences.

[50]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[51]  J. Raymond Attentional modulation of visual motion perception , 2000, Trends in Cognitive Sciences.

[52]  Michael J. Goard,et al.  Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons , 2013, Nature Neuroscience.

[53]  Maria C. Dadarlat,et al.  Locomotion enhances neural encoding of visual stimuli in mouse V1 , 2017 .

[54]  William Muñoz,et al.  Layer-specific modulation of neocortical dendritic inhibition during active wakefulness , 2017, Science.

[55]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[56]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[57]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[58]  Johannes C. Dahmen,et al.  Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex , 2015, Nature Neuroscience.

[59]  J. Maunsell,et al.  Psychophysical measurement of contrast sensitivity in the behaving mouse. , 2012, Journal of neurophysiology.

[60]  J. Alonso,et al.  Thalamic Burst Mode and Inattention in the Awake LGNd , 2006, Neuron.

[61]  Michael P Stryker,et al.  A cortical disinhibitory circuit for enhancing adult plasticity , 2015, eLife.

[62]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[63]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[64]  A Schnee,et al.  Rats are able to navigate in virtual environments , 2005, Journal of Experimental Biology.

[65]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[66]  Karel Svoboda,et al.  Neural coding in barrel cortex during whisker-guided locomotion , 2015, eLife.

[67]  Mounya Elhilali,et al.  Task Difficulty and Performance Induce Diverse Adaptive Patterns in Gain and Shape of Primary Auditory Cortical Receptive Fields , 2009, Neuron.

[68]  Alexander Thiele,et al.  Muscarinic signaling in the brain. , 2013, Annual review of neuroscience.

[69]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[70]  S. Sherman,et al.  GABAergic projection from the basal forebrain to the visual sector of the thalamic reticular nucleus in the cat , 1994, The Journal of comparative neurology.

[71]  M. Carandini,et al.  Probing perceptual decisions in rodents , 2013, Nature Neuroscience.

[72]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[73]  Alexander Attinger,et al.  Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex , 2017, Cell.

[74]  John T. Serences,et al.  Acute Exercise Modulates Feature-selective Responses in Human Cortex , 2017, Journal of Cognitive Neuroscience.

[75]  Sir G. Archaeopteryx Object-based attention in the primary visual cortex of the macaque monkey , 1998 .

[76]  Bing-Xing Huo,et al.  Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature. , 2015, Journal of neurophysiology.

[77]  Axel Nimmerjahn,et al.  Functional imaging in freely moving animals , 2012, Current Opinion in Neurobiology.

[78]  Wei-Cheng Chang,et al.  Organization of long-range inputs and outputs of frontal cortex for top-down control , 2016, Nature Neuroscience.

[79]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[80]  B. Rudy,et al.  Perisomatic GABA Release and Thalamocortical Integration onto Neocortical Excitatory Cells Are Regulated by Neuromodulators , 2008, Neuron.

[81]  Dario L Ringach,et al.  Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex , 2016, The Journal of Neuroscience.

[82]  D. McCormick,et al.  Neural control of brain state , 2014, Current Opinion in Neurobiology.

[83]  D. McCormick,et al.  Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex , 2016, Nature Communications.

[84]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[85]  Shawn R. Olsen,et al.  Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex , 2014, Neuron.

[86]  S. Hestrin,et al.  Subthreshold Mechanisms Underlying State-Dependent Modulation of Visual Responses , 2013, Neuron.

[87]  Y. Dan,et al.  Neuromodulation of Brain States , 2012, Neuron.

[88]  M. Castro-Alamancos,et al.  Neocortex network activation and deactivation states controlled by the thalamus. , 2010, Journal of neurophysiology.

[89]  K. Harris,et al.  Cortical state and attention , 2011, Nature Reviews Neuroscience.

[90]  E. Szabadi,et al.  Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans , 2008, Current neuropharmacology.

[91]  David S. Greenberg,et al.  Rats maintain an overhead binocular field at the expense of constant fusion , 2013, Nature.

[92]  M. Carandini,et al.  Locomotion Controls Spatial Integration in Mouse Visual Cortex , 2013, Current Biology.

[93]  Sander W. Keemink,et al.  Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex , 2016, eLife.

[94]  Gonzalo H. Otazu,et al.  Engaging in an auditory task suppresses responses in auditory cortex , 2009, Nature Neuroscience.

[95]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[96]  Iain D. Couzin,et al.  Virtual Reality for Freely Moving Animals , 2017, Nature Methods.

[97]  Li I. Zhang,et al.  Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex , 2014, Nature Neuroscience.

[98]  M. Nedergaard,et al.  Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function? , 2017, Neurochemical Research.