Secular variations in zonal harmonics of Earth's geopotential and their implications for mantle viscosity and Antarctic melting history due to the last deglaciation

[1]  J. Okuno,et al.  Inference of mantle viscosity for depth resolutions of GIA observations , 2016 .

[2]  D. Yuen,et al.  Residual polar motion caused by coseismic and interseismic deformations from 1900 to present , 2016 .

[3]  J. Okuno,et al.  Total meltwater volume since the Last Glacial Maximum and viscosity structure of Earth's mantle inferred from relative sea level changes at Barbados and Bonaparte Gulf and GIA-induced J̇2 , 2016 .

[4]  R. Kopp,et al.  Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: Resolving Munk’s enigma , 2015, Science Advances.

[5]  K. Lambeck,et al.  Viscosity structure of Earth's mantle inferred from rotational variations due to GIA process and recent melting events , 2015 .

[6]  K. Lambeck,et al.  Sea level and global ice volumes from the Last Glacial Maximum to the Holocene , 2014, Proceedings of the National Academy of Sciences.

[7]  E. Ivins,et al.  Antarctic contribution to sea level rise observed by GRACE with improved GIA correction , 2013 .

[8]  Mats Nilsson,et al.  Energy exchange and water budget partitioning in a boreal minerogenic mire , 2013 .

[9]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[10]  Bruno Hamelin,et al.  Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago , 2012, Nature.

[11]  Anne M. Le Brocq,et al.  A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment , 2012 .

[12]  Y. Ricard,et al.  New insights into mantle convection true polar wander and rotational bulge readjustment , 2011 .

[13]  W. Peltier,et al.  GRACE era secular trends in Earth rotation parameters: A global scale impact of the global warming process? , 2011 .

[14]  W. Peltier,et al.  Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record , 2006 .

[15]  J. Mitrovica,et al.  A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data , 2004 .

[16]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[17]  B. Chao,et al.  Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998 , 2002, Science.

[18]  G. Di Donato,et al.  The SLR secular gravity variations and their impact on the inference of mantle rheology and lithospheric thickness , 2001 .

[19]  K. Lambeck,et al.  Timing of the Last Glacial Maximum from observed sea-level minima , 2000, Nature.

[20]  J. Okuno,et al.  Late Pleistocene and Holocene melting history of the Antarctic ice sheet derived from sea-level variations , 2000 .

[21]  L. Vermeersen,et al.  Changes in rotation induced by Pleistocene ice masses with stratified analytical Earth models , 1997 .

[22]  Byron D. Tapley,et al.  Determination of long-term changes in the Earth's gravity field from satellite laser ranging observations , 1997 .

[23]  E. Bard,et al.  Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge , 1996, Nature.

[24]  J. Mitrovica,et al.  Haskell [1935] revisited , 1996 .

[25]  K. Lambeck Glacial rebound of the British Isles—I. Preliminary model results , 1993 .

[26]  Erik R. Ivins,et al.  Deep mantle viscous structure with prior estimate and satellite constraint , 1993 .

[27]  W. Peltier,et al.  Present-day secular variations in the zonal harmonics of earth's geopotential , 1993 .

[28]  W. Peltier,et al.  ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of po , 1991 .

[29]  R. Fairbanks A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation , 1989, Nature.

[30]  C. Shum,et al.  Temporal variations in low degree zonal harmonics from Starlette orbit analysis , 1989 .

[31]  K. Lambeck,et al.  Late Pleistocene and Holocene sea‐level change in the Australian region and mantle rheology , 1989 .

[32]  W. Peltier Global Sea Level and Earth Rotation , 1988, Science.

[33]  K. Lambeck,et al.  The melting history of the late Pleistocene Antarctic ice sheet , 1988, Nature.

[34]  D. Yuen,et al.  Mantle rheology and satellite signatures from present-day glacial forcings , 1988 .

[35]  W. Peltier,et al.  Pleistocene deglaciation and the Earth's rotation: a new analysis , 1984 .

[36]  D. Rubincam Postglacial rebound observed by lageos and the effective viscosity of the lower mantle , 1984 .

[37]  W. R. Peltier,et al.  Glacial isostatic adjustment and the free air gravity anomaly as a constraint on deep mantle viscosity , 1983 .

[38]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[39]  D. Yuen,et al.  Viscosity of the lower mantle as inferred from rotational data , 1982 .

[40]  D. Yuen,et al.  Polar wandering and the forced responses of a rotating, multilayered, viscoelastic planet , 1981 .

[41]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[42]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[43]  W. Peltier 9.10 – History of Earth Rotation , 2007 .

[44]  J. Okuno,et al.  Perturbations of the Earth's rotation and their implications for the present‐day mass balance of both polar ice caps , 2003 .