Gradient Recovery for the Crouzeix–Raviart Element

A gradient recovery method for the Crouzeix–Raviart element is proposed and analyzed. The proposed method is based on local discrete least square fittings. It is proven to preserve quadratic polynomials and be a bounded linear operator. Numerical examples indicate that it can produce a superconvergent gradient approximation for both elliptic equations and Stokes equations. In addition, it provides an asymptotically exact posteriori error estimators for the Crouzeix–Raviart element.

[1]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[2]  Xue-Cheng Tai,et al.  Superconvergence for the Gradient of Finite Element Approximations by L2 Projections , 2002, SIAM J. Numer. Anal..

[3]  Nianyu Yi,et al.  The Superconvergent Cluster Recovery Method , 2010, J. Sci. Comput..

[4]  Pekka Neittaanmäki,et al.  Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .

[5]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[6]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[7]  R. S. Falk Nonconforming finite element methods for the equations of linear elasticity , 1991 .

[8]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[9]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[10]  Martin Vohralík,et al.  Four closely related equilibrated flux reconstructions for nonconforming finite elements , 2013 .

[11]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[12]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[13]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[14]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[17]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[18]  Shun Zhang,et al.  Recovery-Based Error Estimators for Interface Problems: Mixed and Nonconforming Finite Elements , 2010, SIAM J. Numer. Anal..

[19]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[20]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[21]  J. Bramble,et al.  Higher order local accuracy by averaging in the finite element method , 1977 .

[22]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[23]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[24]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[25]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[26]  D. Braess BOOK REVIEW: Finite Elements: Theory, fast solvers and applications in solid mechanics, 2nd edn , 2002 .

[27]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[28]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.