Gradient Recovery for the Crouzeix–Raviart Element
暂无分享,去创建一个
[1] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[2] Xue-Cheng Tai,et al. Superconvergence for the Gradient of Finite Element Approximations by L2 Projections , 2002, SIAM J. Numer. Anal..
[3] Nianyu Yi,et al. The Superconvergent Cluster Recovery Method , 2010, J. Sci. Comput..
[4] Pekka Neittaanmäki,et al. Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .
[5] I. Babuska,et al. The finite element method and its reliability , 2001 .
[6] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[7] R. S. Falk. Nonconforming finite element methods for the equations of linear elasticity , 1991 .
[8] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[9] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[10] Martin Vohralík,et al. Four closely related equilibrated flux reconstructions for nonconforming finite elements , 2013 .
[11] S. C. Brenner,et al. Linear finite element methods for planar linear elasticity , 1992 .
[12] Franco Brezzi Michel Fortin,et al. Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .
[13] Mark Ainsworth,et al. Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..
[14] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[15] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[16] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[17] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[18] Shun Zhang,et al. Recovery-Based Error Estimators for Interface Problems: Mixed and Nonconforming Finite Elements , 2010, SIAM J. Numer. Anal..
[19] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[20] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[21] J. Bramble,et al. Higher order local accuracy by averaging in the finite element method , 1977 .
[22] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[23] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[24] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[25] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[26] D. Braess. BOOK REVIEW: Finite Elements: Theory, fast solvers and applications in solid mechanics, 2nd edn , 2002 .
[27] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[28] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.