Distance Labeling in Hyperbolic Graphs

A graph G is δ-hyperbolic if for any four vertices u,v,x,y of G the two larger of the three distance sums dG(u,v) + dG(x,y), dG(u,x) + dG(v,y), dG(u,y) + dG(v,x) differ by at most δ, and the smallest δ ≥ 0 for which G is δ-hyperbolic is called the hyperbolicity of G. In this paper, we construct a distance labeling scheme for bounded hyperbolicity graphs, that is a vertex labeling such that the distance between any two vertices of G can be estimated from their labels, without any other source of information. More precisely, our scheme assigns labels of O(log2n) bits for bounded hyperbolicity graphs with n vertices such that distances can be approximated within an additive error of O(log n). The label length is optimal for every additive error up to ne. We also show a lower bound of Ω(log log n) on the approximation factor, namely every s-multiplicative approximate distance labeling scheme on bounded hyperbolicity graphs with polylogarithmic labels requires s = Ω(log log n).

[1]  P. Erdös On an extremal problem in graph theory , 1970 .

[2]  P. Erdös On some extremal problems in graph theory , 1965 .

[3]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[4]  Edward Howorka,et al.  On metric properties of certain clique graphs , 1979, J. Comb. Theory, Ser. B.

[5]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[6]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[7]  Hans-Jürgen Bandelt,et al.  Powers of distance-hereditary graphs , 1995, Discret. Math..

[8]  F. Lazebnik,et al.  A new series of dense graphs of high girth , 1995, math/9501231.

[9]  Vincent Moulton,et al.  T-theory: An Overview , 1996, Eur. J. Comb..

[10]  Mikkel Thorup,et al.  On the approximability of numerical taxonomy (fitting distances by tree metrics) , 1996, SODA '96.

[11]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[12]  Vincent Moulton,et al.  Trees, Taxonomy, and Strongly Compatible Multi-state Characters , 1997 .

[13]  Moussa Benoumhani,et al.  On some numbers related to Whitney numbers of Dowling lattices , 1997 .

[14]  Mike A. Steel,et al.  Retractions of Finite Distance Functions Onto Tree Metrics , 1999, Discret. Appl. Math..

[15]  David Peleg,et al.  Proximity-preserving labeling schemes , 2000, J. Graph Theory.

[16]  Cyril Gavoille,et al.  Approximate Distance Labeling Schemes , 2000, Electron. Notes Discret. Math..

[17]  Friedhelm Meyer auf der Heide,et al.  Algorithms — ESA 2001 , 2001, Lecture Notes in Computer Science.

[18]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[19]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[20]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[21]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[22]  Cyril Gavoille,et al.  Distance labeling scheme and split decomposition , 2003, Discret. Math..

[23]  Hans-Jürgen Bandelt,et al.  1-Hyperbolic Graphs , 2003, SIAM J. Discret. Math..

[24]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[25]  Philip Bille,et al.  Labeling schemes for small distances in trees , 2003, SODA '03.

[26]  Cyril Gavoille,et al.  Optimal Distance Labeling for Interval and Circular-Arc Graphs , 2003, ESA.

[27]  Bruno Courcelle,et al.  Query efficient implementation of graphs of bounded clique-width , 2003, Discret. Appl. Math..

[28]  Andrzej Pelc,et al.  Deterministic Rendezvous in Graphs , 2003 .

[29]  David Peleg,et al.  Compact and localized distributed data structures , 2003, Distributed Computing.

[30]  Cyril Gavoille,et al.  Tree-Decomposition of Graphs with small Diameter Bags , 2003 .

[31]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[32]  Traveling with a Pez Dispenser (or, Routing Issues in MPLS) , 2005, SIAM J. Comput..

[33]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[34]  Mikkel Thorup,et al.  Approximate distance oracles , 2005, J. ACM.

[35]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[36]  Cyril Gavoille,et al.  Localized and Compact Data-Structure for Comparability Graphs , 2005, ISAAC.

[37]  Aleksandrs Slivkins Distance estimation and object location via rings of neighbors , 2005, PODC '05.

[38]  Feodor F. Dragan,et al.  Distance and routing labeling schemes for non-positively curved plane graphs , 2006, J. Algorithms.

[39]  Aleksandrs Slivkins Distance estimation and object location via rings of neighbors , 2006, Distributed Computing.