Intricacies of the Molecular Machinery of Catecholamine Biosynthesis and Secretion by Chromaffin Cells of the Normal Adrenal Medulla and in Pheochromocytoma and Paraganglioma

The adrenal medulla is composed predominantly of chromaffin cells producing and secreting the catecholamines dopamine, norepinephrine, and epinephrine. Catecholamine biosynthesis and secretion is a complex and tightly controlled physiologic process. The pathways involved have been extensively studied, and various elements of the underlying molecular machinery have been identified. In this review, we provide a detailed description of the route from stimulus to secretion of catecholamines by the normal adrenal chromaffin cell compared to chromaffin tumor cells in pheochromocytomas. Pheochromocytomas are adrenomedullary tumors that are characterized by uncontrolled synthesis and secretion of catecholamines. This uncontrolled secretion can be partly explained by perturbations of the molecular catecholamine secretory machinery in pheochromocytoma cells. Chromaffin cell tumors also include sympathetic paragangliomas originating in sympathetic ganglia. Pheochromocytomas and paragangliomas are usually locally confined tumors, but about 15% do metastasize to distant locations. Histopathological examination currently poorly predicts future biologic behavior, thus long term postoperative follow-up is required. Therefore, there is an unmet need for prognostic biomarkers. Clearer understanding of the cellular mechanisms involved in the secretory characteristics of pheochromocytomas and sympathetic paragangliomas may offer one approach for the discovery of novel prognostic biomarkers for improved therapeutic targeting and monitoring of treatment or disease progression.

[1]  C. Leemans,et al.  Biochemically silent sympathetic Paraganglioma, Pheochromocytoma or Metastatic Disease in SDHD mutation carriers. , 2019, The Journal of clinical endocrinology and metabolism.

[2]  A. Tabarin,et al.  Prognosis of Malignant Pheochromocytoma and Paraganglioma (MAPP-Prono Study): A European Network for the Study of Adrenal Tumors Retrospective Study. , 2019, The Journal of clinical endocrinology and metabolism.

[3]  M. Gilbert,et al.  A Transgenic Mouse Model of Pacak–Zhuang Syndrome with An Epas1 Gain-of-Function Mutation , 2019, Cancers.

[4]  C. Larsson,et al.  Molecular Profiling of Pheochromocytoma and Abdominal Paraganglioma Stratified by the PASS Algorithm Reveals Chromogranin B as Associated With Histologic Prediction of Malignant Behavior , 2019, The American journal of surgical pathology.

[5]  L. Eiden,et al.  What's New in Endocrinology: The Chromaffin Cell , 2018, Front. Endocrinol..

[6]  K. Pacak,et al.  Update of Pheochromocytoma Syndromes: Genetics, Biochemical Evaluation, and Imaging , 2018, Front. Endocrinol..

[7]  Min Zhao,et al.  Octreotide reverses shock due to vasoactive intestinal peptide-secreting adrenal pheochromocytoma: A case report and review of literature , 2018, World journal of clinical cases.

[8]  F. Beuschlein,et al.  Biochemical Diagnosis of Chromaffin Cell Tumors in Patients at High and Low Risk of Disease: Plasma versus Urinary Free or Deconjugated O-Methylated Catecholamine Metabolites. , 2018, Clinical chemistry.

[9]  H. Sasano,et al.  Catecholamine-Synthesizing Enzymes in Pheochromocytoma and Extraadrenal Paraganglioma , 2018, Endocrine Pathology.

[10]  E. Korpershoek,et al.  False-positive findings on 6-[18F]fluor-l-3,4-dihydroxyphenylalanine PET (18F-FDOPA-PET) performed for imaging of neuroendocrine tumors. , 2018, European journal of endocrinology.

[11]  Subha Arthur,et al.  The Regulation and Function of the L-Type Amino Acid Transporter 1 (LAT1) in Cancer , 2018, International journal of molecular sciences.

[12]  D. Aust,et al.  Metabolome-guided genomics to identify mutations in isocitrate dehydrogenase, fumarate hydratase and succinate dehydrogenase genes in pheochromocytoma and paraganglioma , 2018, Genetics in Medicine.

[13]  T. Pons,et al.  Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients , 2018, Genetics in Medicine.

[14]  T. Links,et al.  Incidence of pheochromocytoma and sympathetic paraganglioma in the Netherlands: A nationwide study and systematic review. , 2018, European journal of internal medicine.

[15]  E. Letouzé,et al.  Germline Mutations in the Mitochondrial 2-Oxoglutarate/Malate Carrier SLC25A11 Gene Confer a Predisposition to Metastatic Paragangliomas. , 2018, Cancer research.

[16]  V. Ambrosini,et al.  The Role of mTOR in Neuroendocrine Tumors: Future Cornerstone of a Winning Strategy? , 2018, International journal of molecular sciences.

[17]  M. Wilkerson,et al.  Chromaffin cell biology: inferences from The Cancer Genome Atlas , 2018, Cell and Tissue Research.

[18]  K. Pacak,et al.  New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification , 2017, Endocrine reviews.

[19]  C. Larsson,et al.  Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention , 2017, JAMA oncology.

[20]  W. Young,et al.  Malignant Pheochromocytoma and Paraganglioma: 272 Patients Over 55 Years , 2017, The Journal of clinical endocrinology and metabolism.

[21]  W. Oyen,et al.  Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F–DOPA , 2017, European Journal of Nuclear Medicine and Molecular Imaging.

[22]  A. Lam Update on Adrenal Tumours in 2017 World Health Organization (WHO) of Endocrine Tumours , 2017, Endocrine Pathology.

[23]  Jenny Welander,et al.  Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas , 2017, Nature Reviews Endocrinology.

[24]  B. Klink,et al.  Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing. , 2017, The Clinical biochemist. Reviews.

[25]  K. Pacak,et al.  PRECISION MEDICINE: AN UPDATE ON GENOTYPE/BIOCHEMICAL PHENOTYPE RELATIONSHIPS IN PHEOCHROMOCYTOMA/PARAGANGLIOMA PATIENTS. , 2017, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists.

[26]  Antonio L Amelio,et al.  Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. , 2017, Cancer cell.

[27]  Y. Kanai,et al.  Structure-activity relationship of a novel series of inhibitors for cancer type transporter L-type amino acid transporter 1 (LAT1). , 2017, Journal of pharmacological sciences.

[28]  Y. H. Lee,et al.  Genetic Variations of Tyrosine Hydroxylase in the Pathogenesis of Hypertension , 2016, Electrolyte & blood pressure : E & BP.

[29]  A. Lymperopoulos,et al.  GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens. , 2016, The international journal of biochemistry & cell biology.

[30]  R. McCarty Learning about stress: neural, endocrine and behavioral adaptations , 2016, Stress.

[31]  J. Estévez-Herrera,et al.  The intravesicular cocktail and its role in the regulation of exocytosis , 2016, Journal of neurochemistry.

[32]  S. Chasserot-Golaz,et al.  Annexin A2, an essential partner of the exocytotic process in chromaffin cells , 2016, Journal of neurochemistry.

[33]  A. Fassina,et al.  Overexpression of L-Type Amino Acid Transporter 1 (LAT1) and 2 (LAT2): Novel Markers of Neuroendocrine Tumors , 2016, PloS one.

[34]  A. Gimenez-Roqueplo,et al.  Pheochromocytoma and paraganglioma: molecular testing and personalized medicine , 2016, La Revue du praticien.

[35]  Pang-Hu Zhou,et al.  Plasma concentrations of adrenomedullin and atrial and brain natriuretic peptides in patients with adrenal pheochromocytoma. , 2015, Oncology letters.

[36]  Lin Wang,et al.  The role of L-type amino acid transporter 1 in human tumors. , 2015, Intractable & rare diseases research.

[37]  A. Tischler,et al.  Pathology of pheochromocytoma and paraganglioma , 2015 .

[38]  A. Tischler,et al.  15 YEARS OF PARAGANGLIOMA: Pathology of pheochromocytoma and paraganglioma. , 2015, Endocrine-related cancer.

[39]  M. Coleman,et al.  OH, the Places You'll Go! Hydroxylation, Gene Expression, and Cancer. , 2015, Molecular cell.

[40]  K. Abid,et al.  Catecholamine Metabolism in Paraganglioma and Pheochromocytoma: Similar Tumors in Different Sites? , 2015, PloS one.

[41]  David B. Wilson,et al.  Adrenocortical Zonation, Renewal, and Remodeling , 2015, Front. Endocrinol..

[42]  Q. Schwarz,et al.  Sympathoadrenal neural crest cells: The known, unknown and forgotten? , 2015, Development, growth & differentiation.

[43]  Tank Aw,et al.  Peripheral and central effects of circulating catecholamines. , 2014 .

[44]  F. Beuschlein,et al.  Lack of utility of SDHB mutation testing in adrenergic metastatic phaeochromocytoma. , 2014, European journal of endocrinology.

[45]  K. Pacak,et al.  Opposing effects of HIF1α and HIF2α on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYC‐associated factor X , 2014, International journal of cancer.

[46]  Yingyong Hou,et al.  A rare case of watery diarrhea, hypokalemia and achlorhydria syndrome caused by pheochromocytoma , 2014, BMC Cancer.

[47]  F. Beuschlein,et al.  Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. , 2014, The Journal of clinical endocrinology and metabolism.

[48]  S. Asa,et al.  Malignant pheochromocytoma secreting vasoactive intestinal peptide and response to sunitinib: a case report and literature review. , 2014, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists.

[49]  S. Ito,et al.  Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. , 2014, Endocrine-related cancer.

[50]  P. Rustin,et al.  Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. , 2014, Human molecular genetics.

[51]  K. Pacak,et al.  Clinical utility of chromogranin A in SDHx‐related paragangliomas , 2014, European journal of clinical investigation.

[52]  J. Lenders,et al.  Pathophysiology and diagnosis of disorders of the adrenal medulla: focus on pheochromocytoma. , 2014, Comprehensive Physiology.

[53]  M. Montero-Hadjadje,et al.  Characterization and Plasma Measurement of the WE-14 Peptide in Patients with Pheochromocytoma , 2014, PloS one.

[54]  P. Hellman,et al.  Integrative Genetic Characterization and Phenotype Correlations in Pheochromocytoma and Paraganglioma Tumours , 2014, PloS one.

[55]  P. Dahia Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity , 2014, Nature Reviews Cancer.

[56]  R. Borges,et al.  The role of chromogranins in the secretory pathway , 2013, Biomolecular concepts.

[57]  Y. Loh,et al.  Carboxypeptidase E promotes cancer cell survival, but inhibits migration and invasion. , 2013, Cancer letters.

[58]  Laurence Amar,et al.  SDH mutations establish a hypermethylator phenotype in paraganglioma. , 2013, Cancer cell.

[59]  P. Hellman,et al.  Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. , 2013, The Journal of clinical endocrinology and metabolism.

[60]  S. Roman,et al.  Malignant pheochromocytoma and paraganglioma: A population level analysis of long‐term survival over two decades , 2013, Journal of surgical oncology.

[61]  D. Fraker,et al.  Inherited Mutations in Pheochromocytoma and Paraganglioma: Why All Patients Should Be Offered Genetic Testing , 2013, Annals of Surgical Oncology.

[62]  F. Beuschlein,et al.  Analysis of plasma 3-methoxytyramine, normetanephrine and metanephrine by ultraperformance liquid chromatographytandem mass spectrometry: utility for diagnosis of dopamine-producing metastatic phaeochromocytoma , 2013, Annals of clinical biochemistry.

[63]  H. Timmers,et al.  Is the excess cardiovascular morbidity in pheochromocytoma related to blood pressure or to catecholamines? , 2013, The Journal of clinical endocrinology and metabolism.

[64]  J. Lenders,et al.  Mortality Associated with Phaeochromocytoma , 2013, Hormone and Metabolic Research.

[65]  S. Bornstein,et al.  Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. , 2012, European journal of cancer.

[66]  Hui Yang,et al.  Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. , 2012, Genes & development.

[67]  L. Eiden,et al.  Is PACAP the Major Neurotransmitter for Stress Transduction at the Adrenomedullary Synapse? , 2012, Journal of Molecular Neuroscience.

[68]  N. Seidah,et al.  Differential expression and processing of secretogranin II in relation to the status of pheochromocytoma: implications for the production of the tumoral marker EM66. , 2012, Journal of molecular endocrinology.

[69]  M. Urioste,et al.  MAX Mutations Cause Hereditary and Sporadic Pheochromocytoma and Paraganglioma , 2012, Clinical Cancer Research.

[70]  Mubarak Shah,et al.  Distinctive Left-Sided Distribution of Adrenergic-Derived Cells in the Adult Mouse Heart , 2011, PloS one.

[71]  A. Vénisse,et al.  Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. , 2011, Human molecular genetics.

[72]  K. Wimalasena Vesicular monoamine transporters: Structure‐function, pharmacology, and medicinal chemistry , 2011, Medicinal research reviews.

[73]  S. Daubner,et al.  Tyrosine hydroxylase and regulation of dopamine synthesis. , 2011, Archives of biochemistry and biophysics.

[74]  K. Pacak Phaeochromocytoma: a catecholamine and oxidative stress disorder. , 2011, Endocrine regulations.

[75]  M. Fraenkel,et al.  Malignant pheochromocytoma: predictive factors of malignancy and clinical course in 16 patients at a single tertiary medical center , 2011, Endocrine.

[76]  Lei Feng,et al.  Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. , 2011, The Journal of clinical endocrinology and metabolism.

[77]  L. Hofbauer,et al.  Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. , 2011, Clinical chemistry.

[78]  A. Mcnicol,et al.  Update on tumours of the adrenal cortex, phaeochromocytoma and extra‐adrenal paraganglioma , 2011, Histopathology.

[79]  S. Bornstein,et al.  Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. , 2010, Endocrine-related cancer.

[80]  Agnieszka Maliszewska,et al.  Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. , 2010, Molecular endocrinology.

[81]  Vivian Hook,et al.  Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides , 2010, Neuropeptides.

[82]  Y. Anouar,et al.  Expression of Trophic Peptides and Their Receptors in Chromaffin Cells and Pheochromocytoma , 2010, Cellular and Molecular Neurobiology.

[83]  Y. Loh,et al.  Carboxypeptidase E: Elevated Expression Correlated with Tumor Growth and Metastasis in Pheochromocytomas and Other Cancers , 2010, Cellular and Molecular Neurobiology.

[84]  Nitin Gupta,et al.  Mass spectrometry-based neuropeptidomics of secretory vesicles from human adrenal medullary pheochromocytoma reveals novel peptide products of prohormone processing. , 2010, Journal of proteome research.

[85]  J. Bertherat,et al.  Expression of trophic amidated peptides and their receptors in benign and malignant pheochromocytomas: high expression of adrenomedullin RDC1 receptor and implication in tumoral cell survival. , 2010, Endocrine-related cancer.

[86]  Y. Bailly,et al.  S100A10‐Mediated Translocation of Annexin‐A2 to SNARE Proteins in Adrenergic Chromaffin Cells Undergoing Exocytosis , 2010, Traffic.

[87]  D. O'Connor,et al.  Human Tyrosine Hydroxylase Natural Allelic Variation: Influence on Autonomic Function and Hypertension , 2010, Cellular and Molecular Neurobiology.

[88]  D. O'Connor,et al.  Catestatin: A multifunctional peptide from chromogranin A , 2010, Regulatory Peptides.

[89]  A. Tischler,et al.  Tyrosine hydroxylase, chromogranin A, and steroidogenic acute regulator as markers for successful separation of human adrenal medulla , 2010, Cell and Tissue Research.

[90]  P. Bénit,et al.  The Warburg Effect Is Genetically Determined in Inherited Pheochromocytomas , 2009, PloS one.

[91]  E. D. de Vries,et al.  Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. , 2009, Critical reviews in oncology/hematology.

[92]  A. Vénisse,et al.  The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. , 2009, The Journal of clinical endocrinology and metabolism.

[93]  N. Guérineau,et al.  Revisiting the Stimulus-Secretion Coupling in the Adrenal Medulla: Role of Gap Junction-Mediated Intercellular Communication , 2009, Molecular Neurobiology.

[94]  A. Tischler,et al.  Observer Variation in the Application of the Pheochromocytoma of the Adrenal Gland Scaled Score , 2009, The American journal of surgical pathology.

[95]  E. Crivellato,et al.  The Chromaffin Vesicle: Advances in Understanding the Composition of a Versatile, Multifunctional Secretory Organelle , 2008, Anatomical record.

[96]  M. Merino,et al.  Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene. , 2008, The Journal of clinical endocrinology and metabolism.

[97]  A. Elkahloun,et al.  Differential expression of the regulated catecholamine secretory pathway in different hereditary forms of pheochromocytoma. , 2008, American journal of physiology. Endocrinology and metabolism.

[98]  Shin‐Rong Hwang,et al.  Endopin Serpin Protease Inhibitors Localize with Neuropeptides in Secretory Vesicles and Neuroendocrine Tissues , 2008, Neuroendocrinology.

[99]  E. Pellizzari,et al.  Possible autocrine enkephalin regulation of catecholamine release in human pheochromocytoma cells. , 2008, Life sciences.

[100]  Y. Imai,et al.  Expression of adrenomedullin 2/intermedin in human adrenal tumors and attached non-neoplastic adrenal tissues. , 2008, The Journal of endocrinology.

[101]  M. Stridsberg,et al.  Measurements of secretogranins II, III, V and proconvertases 1/3 and 2 in plasma from patients with neuroendocrine tumours , 2008, Regulatory Peptides.

[102]  Jae Joon Lee,et al.  Effects of Anonaine on Dopamine Biosynthesis and l-DOPA-Induced Cytotoxicity in PC12 Cells , 2008, Molecules.

[103]  H. Vaudry,et al.  Role of PACAP in the physiology and pathology of the sympathoadrenal system , 2008, Frontiers in Neuroendocrinology.

[104]  S. Gasman,et al.  Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells , 2007, Acta physiologica.

[105]  F. Sala,et al.  Nicotinic acetylcholine receptors of adrenal chromaffin cells , 2007, Acta physiologica.

[106]  E. Baudin,et al.  Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. , 2007, The Journal of clinical endocrinology and metabolism.

[107]  L. Bottarelli,et al.  Peptide products of the neurotrophin-inducible gene vgf are produced in human neuroendocrine cells from early development and increase in hyperplasia and neoplasia. , 2007, The Journal of clinical endocrinology and metabolism.

[108]  Deric M. Park,et al.  Proteomic profiling of von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 pheochromocytomas reveals different expression of chromogranin B. , 2007, Endocrine-related cancer.

[109]  R. Worrell,et al.  Neuropeptide Y expression in phaeochromocytomas: relative absence in tumours from patients with von Hippel-Lindau syndrome. , 2007, The Journal of endocrinology.

[110]  H. Vaudry,et al.  Involvement of multiple signaling pathways in PACAP-induced EM66 secretion from chromaffin cells , 2006, Regulatory Peptides.

[111]  J. García-Sancho,et al.  Calcium signaling and exocytosis in adrenal chromaffin cells. , 2006, Physiological reviews.

[112]  N. Seidah,et al.  Expression and Processing of the Neuroendocrine Protein Secretogranin II in Benign and Malignant Pheochromocytomas , 2006, Annals of the New York Academy of Sciences.

[113]  W. Scherbaum,et al.  Expression of Connexins in Chromaffin Cells of Normal Human Adrenals and in Benign and Malignant Pheochromocytomas , 2006, Annals of the New York Academy of Sciences.

[114]  C. Cavadas,et al.  Deletion of the neuropeptide Y (NPY) Y1 receptor gene reveals a regulatory role of NPY on catecholamine synthesis and secretion , 2006, Proceedings of the National Academy of Sciences.

[115]  S. Richard,et al.  Genetic testing in pheochromocytoma or functional paraganglioma. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[116]  R. Worrell,et al.  Different expression of catecholamine transporters in phaeochromocytomas from patients with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. , 2005, European journal of endocrinology.

[117]  R. Kirchmair,et al.  Secretoneurin: a new player in angiogenesis and chemotaxis linking nerves, blood vessels and the immune system. , 2005, Current protein & peptide science.

[118]  Sandro Santagata,et al.  A HIF1α Regulatory Loop Links Hypoxia and Mitochondrial Signals in Pheochromocytomas , 2005, PLoS genetics.

[119]  L. Dubois,et al.  Dopamine-secreting Pheochromocytomas: In Search of a Syndrome , 2005, World Journal of Surgery.

[120]  Jason U Tilan,et al.  Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors. , 2005, Cancer research.

[121]  A. Harris,et al.  HIF-2alpha expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia. , 2005, Experimental cell research.

[122]  T. Fujita,et al.  Adrenomedullin and its related peptide. , 2005, Endocrine journal.

[123]  P. Munson,et al.  Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. , 2004, Endocrine-related cancer.

[124]  A. Tischler,et al.  Neuroendocrine Secretory Protein-55 (NESP-55) Expression Discriminates Pancreatic Endocrine Tumors and Pheochromocytomas From Gastrointestinal and Pulmonary Carcinoids , 2004, The American journal of surgical pathology.

[125]  S. Bornstein,et al.  Vitamin C Is an Important Cofactor for Both Adrenal Cortex and Adrenal Medulla , 2004, Endocrine Research.

[126]  D. Aunis,et al.  Innate immunity: involvement of new neuropeptides. , 2003, Trends in microbiology.

[127]  S. Yoo,et al.  Chromogranin B-induced Secretory Granule Biogenesis , 2003, Journal of Biological Chemistry.

[128]  C. Cohen,et al.  Galanin Immunoreactivity in Paragangliomas but Not in Carcinoid Tumors , 2003, Applied immunohistochemistry & molecular morphology : AIMM.

[129]  M. Bogyo,et al.  Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[130]  H. Vaudry,et al.  Identification of the secretogranin II-derived peptide EM66 in pheochromocytomas as a potential marker for discriminating benign versus malignant tumors. , 2003, The Journal of clinical endocrinology and metabolism.

[131]  O. Nilsson,et al.  NESP55, a novel chromogranin-like peptide, is expressed in endocrine tumours of the pancreas and adrenal medulla but not in ileal carcinoids , 2003, British Journal of Cancer.

[132]  K. Pacak,et al.  Pheochromocytoma as an Endocrine Emergency , 2003, Reviews in Endocrine and Metabolic Disorders.

[133]  F. Cuttitta,et al.  Adrenomedullin and cancer , 2003, Regulatory Peptides.

[134]  Alan Morgan,et al.  Secretory granule exocytosis. , 2003, Physiological reviews.

[135]  H. Hollema,et al.  Catecholamine-synthesizing enzymes in carcinoid tumors and pheochromocytomas. , 2003, Clinical chemistry.

[136]  S. Salton Neurotrophins, growth-factor-regulated genes and the control of energy balance. , 2003, The Mount Sinai journal of medicine, New York.

[137]  J. Trifaró Molecular Biology of the Chromaffin Cell , 2002, Annals of the New York Academy of Sciences.

[138]  T. Tai,et al.  Cholinergic and Peptidergic Regulation of Phenylethanolamine N‐Methyltransferase Gene Expression , 2002, Annals of the New York Academy of Sciences.

[139]  Y. Sugisaki,et al.  Immunohistochemical, biochemical and immunoelectron microscopic analysis of antigenic proteins on neuroendocrine cell tumors using monoclonal antibody HISL-19. , 2002, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi.

[140]  H. Bonjer,et al.  The value of plasma markers for the clinical behaviour of phaeochromocytomas. , 2002, European journal of endocrinology.

[141]  J. Haycock,et al.  Lack of regulation of aromatic l‐amino acid decarboxylase in intact bovine chromaffin cells , 2002, Journal of neurochemistry.

[142]  L. Thompson Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) to Separate Benign From Malignant Neoplasms: A Clinicopathologic and Immunophenotypic Study of 100 Cases , 2002, The American journal of surgical pathology.

[143]  T. Flatmark,et al.  Ubiquitination of soluble and membrane-bound tyrosine hydroxylase and degradation of the soluble form. , 2002, European journal of biochemistry.

[144]  C. Cavadas,et al.  NPY regulates catecholamine secretion from human adrenal chromaffin cells. , 2001, The Journal of clinical endocrinology and metabolism.

[145]  S. Bornstein,et al.  The importance of adrenocortical glucocorticoids for adrenomedullary and physiological response to stress: a study in isolated glucocorticoid deficiency. , 2001, The Journal of clinical endocrinology and metabolism.

[146]  K. Unsicker,et al.  Reduction of endogenous TGF-β does not affect phenotypic development of sympathoadrenal progenitors into adrenal chromaffin cells , 2001, Mechanisms of Development.

[147]  Y. Kanai,et al.  Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. , 2001, Biochimica et biophysica acta.

[148]  Y. Loh,et al.  Chromogranin A, an “On/Off” Switch Controlling Dense-Core Secretory Granule Biogenesis , 2001, Cell.

[149]  K. Pacak,et al.  Understanding Catecholamine Metabolism as a Guide to the Biochemical Diagnosis of Pheochromocytoma , 2001, Reviews in Endocrine and Metabolic Disorders.

[150]  G. Eisenhofer The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. , 2001, Pharmacology & therapeutics.

[151]  H. Vaudry,et al.  Pituitary adenylate cyclase-activating polypeptide stimulates secretoneurin release and secretogranin II gene transcription in bovine adrenochromaffin cells through multiple signaling pathways and increased binding of pre-existing activator protein-1-like transcription factors. , 2001, Molecular pharmacology.

[152]  D. Moura,et al.  Vascular adrenoceptors: an update. , 2001, Pharmacological reviews.

[153]  A. Vortmeyer,et al.  The Journal of Clinical Endocrinology & Metabolism Printed in U.S.A. Copyright © 2001 by The Endocrine Society Pheochromocytomas in von Hippel-Lindau Syndrome and Multiple Endocrine Neoplasia Type 2 Display Distinct Biochemical and Clinical Phenotypes , 2022 .

[154]  R. Kvetňanský,et al.  Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events , 2001, Trends in Neurosciences.

[155]  G. Chrousos,et al.  Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. , 2000, The New England journal of medicine.

[156]  D. O'Connor,et al.  Processing of chromogranin A by plasmin provides a novel mechanism for regulating catecholamine secretion. , 2000, The Journal of clinical investigation.

[157]  Chi-Wei Lee,et al.  Cardiovascular manifestations of pheochromocytoma. , 2000, The American journal of emergency medicine.

[158]  C. Wiedermann Secretoneurin: a functional neuropeptide in health and disease , 2000, Peptides.

[159]  R. Possenti,et al.  VGF: A Novel Role for This Neuronal and Neuroendocrine Polypeptide in the Regulation of Energy Balance , 2000, Frontiers in Neuroendocrinology.

[160]  D. Aunis,et al.  Antibacterial and Antifungal Activities of Vasostatin-1, the N-terminal Fragment of Chromogranin A* , 2000, The Journal of Biological Chemistry.

[161]  P. Corvol,et al.  Cloning and expression pattern of EPAS1 in the chicken embryo , 1999, FEBS letters.

[162]  D. Aunis,et al.  Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla. , 1999, Acta physiologica Scandinavica.

[163]  R. Hammer,et al.  The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. , 1998, Genes & development.

[164]  S. Her,et al.  Phenylethanolamine N-methyltransferase gene expression: synergistic activation by Egr-1, AP-2 and the glucocorticoid receptor. , 1998, Brain research. Molecular brain research.

[165]  H. Lehnert Regulation of catecholamine synthesizing enzyme gene expression in human pheochromocytoma. , 1998, European journal of endocrinology.

[166]  R. Burgoyne,et al.  Analysis of regulated exocytosis in adrenal chromaffin cells: insights into NSF/SNAP/SNARE function , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[167]  K. Takekoshi,et al.  Expression of mRNA coding for four catecholamine-synthesizing enzymes in human adrenal pheochromocytomas. , 1998, European journal of endocrinology.

[168]  J. Henry,et al.  The vesiicular monoamine transporter: from chromaffin granule to brain , 1998, Neurochemistry International.

[169]  R. Picart,et al.  Aminopeptidase B: a processing enzyme secreted and associated with the plasma membrane of rat pheochromocytoma (PC12) cells. , 1998, Journal of cell science.

[170]  N. Seidah,et al.  Proteolytic Processing of Chromogranin B and Secretogranin II by Prohormone Convertases , 1998, Journal of neurochemistry.

[171]  D. O'Connor,et al.  Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. , 1997, The Journal of clinical investigation.

[172]  S. Mahata,et al.  Tissue Plasminogen Activator (t-PA) Is Targeted to the Regulated Secretory Pathway , 1997, The Journal of Biological Chemistry.

[173]  G. Mazzocchi,et al.  Adrenomedullin stimulates steroid secretion by the isolated perfused rat adrenal gland in situ: Comparison with calcitonin gene-related peptide effects , 1996, Peptides.

[174]  D. Aunis,et al.  Antibacterial Activity of Glycosylated and Phosphorylated Chromogranin A-derived Peptide 173-194 from Bovine Adrenal Medullary Chromaffin Granules* , 1996, The Journal of Biological Chemistry.

[175]  K. Wimalasena,et al.  Reduction of Dopamine β-Monooxygenase , 1996, The Journal of Biological Chemistry.

[176]  Y. Chen,et al.  Regulation of tyrosine hydroxylase gene expression by the m1 muscarinic acetylcholine receptor in rat pheochromocytoma cells. , 1996, Brain research. Molecular brain research.

[177]  E. Carbone,et al.  The mechanism of calcium channel facilitation in bovine chromaffin cells. , 1996, The Journal of physiology.

[178]  K. Unsicker,et al.  Growth factors in chromaffin cells , 1996, Progress in Neurobiology.

[179]  M. Schiller,et al.  Chromaffin granule aspartic proteinase processes recombinant proopiomelanocortin (POMC). , 1995, Biochemical and biophysical research communications.

[180]  I. Kopin,et al.  Regional release and removal of catecholamines and extraneuronal metabolism to metanephrines. , 1995, The Journal of clinical endocrinology and metabolism.

[181]  M. Zhu,et al.  Aromatic L-amino acid decarboxylase: biological characterization and functional role. , 1995, General pharmacology.

[182]  B. Kennedy,et al.  Nonadrenal epinephrine-forming enzymes in humans. Characteristics, distribution, regulation, and relationship to epinephrine levels. , 1995, The Journal of clinical investigation.

[183]  H. Schlüter,et al.  Coenzyme A glutathione disulfide. A potent vasoconstrictor derived from the adrenal gland. , 1995, Circulation research.

[184]  M Linial,et al.  Vesicular neurotransmitter transporters: from bacteria to humans. , 1995, Physiological reviews.

[185]  D. Aunis,et al.  Processing of chromogranin B in bovine adrenal medulla. Identification of secretolytin, the endogenous C-terminal fragment of residues 614-626 with antibacterial activity. , 1995, European journal of biochemistry.

[186]  A. De Léan,et al.  Natriuretic Peptides Inhibit Nicotine‐Induced Whole‐Cell Currents and Catecholamine Secretion in Bovine Chromaffin Cells: Evidence for the Involvement of the Atrial Natriuretic Factor R2 Receptors , 1995, Journal of neurochemistry.

[187]  T. Koshikawa,et al.  Discrepancy between PNMT presence and relative lack of adrenaline production in extra‐adrenal pheochromocytoma , 1994, Journal of surgical oncology.

[188]  F. Supek,et al.  A novel accessory subunit for vacuolar H(+)-ATPase from chromaffin granules. , 1994, The Journal of biological chemistry.

[189]  R. Angeletti,et al.  Inhibition of parathyroid hormone secretion by amino-terminal chromogranin peptides. , 1994, Endocrinology.

[190]  I. Macara,et al.  Evidence for the involvement of Rab3A in Ca(2+)-dependent exocytosis from adrenal chromaffin cells. , 1994, The Journal of biological chemistry.

[191]  H. Funahashi,et al.  Tyrosine hydroxylase indicates cell differentiation of catecholamine biosynthesis in neuroendocrine tumors , 1994, Journal of endocrinological investigation.

[192]  R. Burgoyne,et al.  Exocytosis in adrenal chromaffin cells. , 1993, Journal of anatomy.

[193]  Xin-Min Li,et al.  NSD-1015 alters the gene expression of aromaticl-amino acid decarboxylase in rat PC12 pheochromocytoma cells , 1993, Neurochemical Research.

[194]  D. L. Wong,et al.  Glucocorticoid regulation of phenylethanolamine N‐methyltransferase in vivo , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[195]  K. Helle,et al.  The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels , 1992, Regulatory Peptides.

[196]  K. Nakao,et al.  Characterization of Natriuretic Peptide Receptors in Cultured Cells , 1992, Hypertension.

[197]  G. Chejfec,et al.  Plasma calcitonin gene-related peptide and atrial natriuretic peptide levels during resection of pheochromocytoma. , 1991, Surgery.

[198]  M. Sporn,et al.  Localization and actions of transforming growth factor-beta s in the embryonic nervous system. , 1991, Development.

[199]  M. Wolf,et al.  Effect of Aging on Tyrosine Hydroxylase Protein Content and the Relative Number of Dopamine Nerve Terminals in Human Caudate , 1991, Journal of neurochemistry.

[200]  D. O'Connor,et al.  Chromogranin A Storage and Secretion: Sensitivity and Specificity for the Diagnosis of Pheochromocytoma , 1991, Medicine.

[201]  B. Livett,et al.  Substance P has biphasic effects on catecholamine secretion evoked by electrical stimulation of perfused rat adrenal glands in vitro. , 1990, Journal of the autonomic nervous system.

[202]  T. Hökfelt,et al.  The glucocorticoid receptor in the adrenal gland is localized in the cytoplasm of adrenaline cells. , 1989, Acta physiologica Scandinavica.

[203]  M. Israel,et al.  Neuropeptide Y expression distinguishes malignant from benign pheochromocytoma. , 1989, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[204]  G. Painter,et al.  31P nuclear magnetic resonance study of the metabolic pools of adenosine triphosphate in cultured bovine adrenal medullary chromaffin cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[205]  E. Grouzmann,et al.  Plasma neuropeptide Y concentrations in patients with neuroendocrine tumors. , 1989, The Journal of clinical endocrinology and metabolism.

[206]  T. Nakada,et al.  Catecholamine metabolism in pheochromocytoma and normal adrenal medullae. , 1988, The Journal of urology.

[207]  N. Seidah,et al.  Identification and localization of 7B2 protein in human, porcine, and rat thyroid gland and in human medullary carcinoma. , 1988, Endocrinology.

[208]  H. Nawata,et al.  Plasma 7B2 (a novel pituitary protein) immunoreactivity concentrations in patients with various endocrine disorders. , 1988, Endocrinologia japonica.

[209]  S. Simasko,et al.  Effects of Substance P on Nicotinic Acetylcholine Receptor Function in PC 12 Cells , 1987, Journal of neurochemistry.

[210]  T. Adrian,et al.  Localization and molecular forms of galanin in human adrenals: elevated levels in pheochromocytomas. , 1986, The Journal of clinical endocrinology and metabolism.

[211]  K. Hecht,et al.  Relationship of Substance P to Catecholamines, Stress, and Hypertension , 1986, Journal of cardiovascular pharmacology.

[212]  A. Vinik,et al.  Plasma gut hormone levels in 37 patients with pheochromocytomas , 1986, World Journal of Surgery.

[213]  D. Apps,et al.  The molecular function of adrenal chromaffin granules: Established facts and unresolved topics , 1986, Neuroscience.

[214]  D. O'Connor,et al.  Secretion of chromogranin A by peptide-producing endocrine neoplasms. , 1986, The New England journal of medicine.

[215]  G. Chejfec,et al.  Bombesin in human neuroendocrine (NE) neoplasms , 1985, Peptides.

[216]  D. Bostwick,et al.  Gastrin releasing peptide in human neuroendocrine tumours , 1985, The Journal of pathology.

[217]  P. Palatini Fumarate is the cause of the apparent ping-pong kinetics of dopamine beta-hydroxylase. , 1985, Biochemistry international.

[218]  B. Livett Adrenal medullary chromaffin cells in vitro. , 1984, Physiological reviews.

[219]  A. Tischler,et al.  Production of "ectopic" vasoactive intestinal peptide-like and neurotensin-like immunoreactivity in human pheochromocytoma cell cultures , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[220]  K. Nakao,et al.  Plasma methionine-enkephalin and leucine-enkephalin in normal subjects and patients with pheochromocytoma. , 1983, The Journal of clinical endocrinology and metabolism.

[221]  Harvey J. Motulsky,et al.  Adrenergic receptors in man , 1982 .

[222]  A. Tischler,et al.  Content and release of neurotensin in PC12 pheochromocytoma cell cultures: modulation by dexamethasone and nerve growth factor , 1982, Regulatory Peptides.

[223]  S. Wells,et al.  The relationship between enzyme activity and the catecholamine content and secretion of pheochromocytomas. , 1979, The Journal of clinical endocrinology and metabolism.

[224]  P. Yu PhenylethanolamineN-methyltransferase from the brain and adrenal medulla of the rat , 1978 .

[225]  W. Louis,et al.  Abnormalities in enzymes involved in catecholamine synthesis and catabolism in phaeochromocytoma. , 1977, Clinical science and molecular medicine.

[226]  R. Weinshilboum,et al.  Serum Dopamine‐Beta‐Hydroxylase Activity , 1971, Circulation research.

[227]  S. Kaufman,et al.  3,4-dihydroxyphenylethylamine beta-hydroxylase. Physical properties, copper content, and role of copper in the catalytic acttivity. , 1965, The Journal of biological chemistry.

[228]  S. Udenfriend,et al.  TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. , 1964, The Journal of biological chemistry.

[229]  S. Kaufman,et al.  The enzymatic conversion of 3,4-dihydroxyphenylethylamine to norepinephrine. , 1960, The Journal of biological chemistry.

[230]  A. M. Cárdenas,et al.  How does the stimulus define exocytosis in adrenal chromaffin cells? , 2017, Pflügers Archiv - European Journal of Physiology.

[231]  A William Tank,et al.  Peripheral and central effects of circulating catecholamines. , 2015, Comprehensive Physiology.

[232]  U. Shankavaram,et al.  Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia , 2014, Journal of Molecular Medicine.

[233]  A. Munnich,et al.  Kinetic analyses guide the therapeutic decision in a novel form of moderate aromatic Acid decarboxylase deficiency. , 2012, JIMD reports.

[234]  S. Bornstein,et al.  Update on the corticomedullary interaction in the adrenal gland. , 2011, Endocrine development.

[235]  S. Bornstein,et al.  Cortical-chromaffin cell interactions in the adrenal gland , 2005, Endocrine pathology.

[236]  Eyal Gottlieb,et al.  Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. , 2005, Cancer cell.

[237]  H. Nagura,et al.  Catecholamine synthesizing enzymes in 70 cases of functioning and non-functioning phaeochromocytoma and extra-adrenal paraganglioma , 2005, Virchows Archiv A.

[238]  G. Nussdorfer,et al.  Neuropeptide-Y and Y-receptors in the autocrine-paracrine regulation of adrenal gland under physiological and pathophysiological conditions (Review). , 2005, International journal of molecular medicine.

[239]  Andrew L. Kung,et al.  A HIF1-alpha Regulatory Loop Links Hypoxiaand Mitochondrial Signals in Pheochromocytomas , 2005 .

[240]  David G. Watson,et al.  Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. , 2005, Cancer cell.

[241]  R. DeLellis Pathology and genetics of tumours of endocrine organs , 2004 .

[242]  J. Polak,et al.  Multiple peptide production and presence of general neuroendocrine markers detected in 12 cases of human phaeochromocytoma and in mammalian adrenal glands , 2004, Virchows Archiv A.

[243]  D. L. Wong Why is the adrenal adrenergic? , 2003, Endocrine pathology.

[244]  P. Tessari,et al.  The metabolic conversion of phenylalanine into tyrosine in the human kidney: does it have nutritional implications in renal patients? , 2002, Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation.

[245]  M. Stridsberg,et al.  Chromogranin A and chromogranin B are sensitive circulating markers for phaeochromocytoma. , 1997, European journal of endocrinology.

[246]  T Nagatsu,et al.  Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. , 1995, Essays in biochemistry.

[247]  W. Scherbaum,et al.  Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. , 1994, The Journal of clinical endocrinology and metabolism.

[248]  S. Steinberg,et al.  Decreased expression of neuropeptides in malignant paragangliomas: an immunohistochemical study. , 1988, Human pathology.

[249]  S. Carmichael The adrenal chromaffin vesicle: an historical perspective. , 1983, Journal of the autonomic nervous system.

[250]  H J Motulsky,et al.  Adrenergic receptors in man: direct identification, physiologic regulation, and clinical alterations. , 1982, The New England journal of medicine.

[251]  J. Feldman Phenylethanolamine-N-methyltransferase activity determines the epinephrine concentration of pheochromocytomas. , 1981, Research communications in chemical pathology and pharmacology.

[252]  N. Hillarp,et al.  Evidence of adrenaline and noradrenaline in separate adrenal medullary cells. , 1953, Acta physiologica Scandinavica.