Data-driven modelling of operational district energy networks

[1]  F. Dittus,et al.  Heat transfer in automobile radiators of the tubular type , 1930 .

[2]  K. Shine,et al.  Intergovernmental panel on climate change , 1996, Environmental science and pollution research international.

[3]  Jon Hand,et al.  CONTRASTING THE CAPABILITIES OF BUILDING ENERGY PERFORMANCE SIMULATION PROGRAMS , 2008 .

[4]  Weilong Wang,et al.  Mobilized Thermal Energy Storage for Heat Recovery for Distributed Heating , 2010 .

[5]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[6]  Christoph F. Reinhart,et al.  Urban building energy modeling – A review of a nascent field , 2015 .

[7]  Jonas Allegrini,et al.  A review of modelling approaches and tools for the simulation of district-scale energy systems , 2015 .

[8]  Sven Werner,et al.  Thermal energy storage systems for district heating and cooling , 2021, Advances in Thermal Energy Storage Systems.

[9]  Stéphane Grieu,et al.  Predictive Control of Thermal Storage Systems Designed for Multi-Energy District Boilers: a Case Study in France , 2015 .

[10]  Luisa F. Cabeza,et al.  Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review , 2016 .

[11]  P. Hopke,et al.  Performance Evaluation of Two 25 kW Residential Wood Pellet Boiler Heating Systems , 2017 .

[12]  G. Fang,et al.  An overview of thermal energy storage systems , 2018 .

[13]  Andrés Macía,et al.  Assessment methodology for urban excess heat recovery solutions in energy-efficient District Heating Networks , 2018 .

[14]  F. Johnsson,et al.  Thermal energy storage in district heating: Centralised storage vs. storage in thermal inertia of buildings , 2018 .

[15]  Zhibin Yu,et al.  District Heating Challenges for the UK , 2019, Energies.