Learning Nonlinear Brain Dynamics: van der Pol Meets LSTM

Many real-world data sets, especially in biology, are produced by highly multivariate and nonlinear complex dynamical systems. In this paper, we focus on brain imaging data, including both calcium imaging and functional MRI data. Standard vector-autoregressive models are limited by their linearity assumptions, while nonlinear general-purpose, large-scale temporal models, such as LSTM networks, typically require large amounts of training data, not always readily available in biological applications; furthermore, such models have limited interpretability. We introduce here a novel approach for learning a nonlinear differential equation model aimed at capturing brain dynamics. Specifically, we propose a variable-projection optimization approach to estimate the parameters of the multivariate (coupled) van der Pol oscillator, and demonstrate that such a model can accurately represent nonlinear dynamics of the brain data. Furthermore, in order to improve the predictive accuracy when forecasting future brain-activity time series, we use this analytical model as an unlimited source of simulated data for pretraining LSTM; such model-specific data augmentation approach consistently improves LSTM performance on both calcium and fMRI imaging data.

[1]  Terrence J. Sejnowski,et al.  The Wilson–Cowan model, 36 years later , 2009, Biological Cybernetics.

[2]  Michael P H Stumpf,et al.  Topological sensitivity analysis for systems biology , 2014, Proceedings of the National Academy of Sciences.

[3]  Julio R. Banga,et al.  Robust and efficient parameter estimation in dynamic models of biological systems , 2015, BMC Systems Biology.

[4]  Liam Paninski,et al.  OnACID: Online Analysis of Calcium Imaging Data in Real Time , 2017, bioRxiv.

[5]  Neil D. Lawrence,et al.  Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes , 2008, NIPS.

[6]  Jakob H. Macke,et al.  Fast amortized inference of neural activity from calcium imaging data with variational autoencoders , 2017, NIPS.

[7]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[8]  James V. Burke,et al.  An inequality constrained nonlinear Kalman-Bucy smoother by interior point likelihood maximization , 2009, Autom..

[9]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[10]  R. Mortensen Maximum-likelihood recursive nonlinear filtering , 1968 .

[11]  Lennart Ljung,et al.  Generalized Kalman smoothing: Modeling and algorithms , 2016, Autom..

[12]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[13]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[14]  H. Sebastian Seung,et al.  Automatic Neuron Detection in Calcium Imaging Data Using Convolutional Networks , 2016, NIPS.

[15]  R. Yuste,et al.  Optical probing of neuronal circuits with calcium indicators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Dirk Husmeier,et al.  ODE parameter inference using adaptive gradient matching with Gaussian processes , 2013, AISTATS.

[17]  J. Varah A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations , 1982 .

[18]  Philippe Faure,et al.  Is there chaos in the brain? II. Experimental evidence and related models. , 2003, Comptes rendus biologies.

[19]  J Kurths,et al.  Estimation of parameters and unobserved components for nonlinear systems from noisy time series. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Aleksandr Y. Aravkin,et al.  Robust and Trend-Following Student's t Kalman Smoothers , 2013, SIAM J. Control. Optim..

[21]  T. Leeuwen,et al.  A penalty method for PDE-constrained optimization in inverse problems , 2015, 1504.02249.

[22]  Richard J. Meinhold,et al.  Robustification of Kalman Filter Models , 1989 .

[23]  Hakan Inan,et al.  Robust Estimation of Neural Signals in Calcium Imaging , 2017, NIPS.

[24]  Mikhail A. Lebedev,et al.  Chronic, Wireless Recordings of Large Scale Brain Activity in Freely Moving Rhesus Monkeys , 2014, Nature Methods.

[25]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[26]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[27]  Bradley M. Bell,et al.  The marginal likelihood for parameters in a discrete Gauss-Markov process , 2000, IEEE Trans. Signal Process..

[28]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[29]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[30]  Dmitriy Drusvyatskiy,et al.  Efficient Quadratic Penalization Through the Partial Minimization Technique , 2018, IEEE Transactions on Automatic Control.

[31]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[32]  Rosario Romera,et al.  Kalman filter with outliers and missing observations , 1997 .

[33]  Nicolas Brunel,et al.  Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference , 2007, Bioinform..

[34]  Toru Yanagawa,et al.  Single-trial classification of awareness state during anesthesia by measuring critical dynamics of global brain activity , 2019, Scientific Reports.

[35]  Zeljko M. Durovic,et al.  Robust estimation with unknown noise statistics , 1999, IEEE Trans. Autom. Control..

[36]  T. Kawahara Coupled Van der Pol oscillators — A model of excitatory and inhibitory neural interactions , 1980, Biological Cybernetics.

[37]  Adeel Razi,et al.  Compensation in Preclinical Huntington's Disease: Evidence From the Track-On HD Study , 2015, EBioMedicine.

[38]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[39]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[40]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[41]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[42]  M. Magnasco,et al.  Renormalization of Collective Modes in Large-Scale Neural Dynamics , 2017 .

[43]  Stefan Bauer,et al.  Scalable Variational Inference for Dynamical Systems , 2017, NIPS.

[44]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[45]  Dirk Husmeier,et al.  Gradient Matching Methods for Computational Inference in Mechanistic Models for Systems Biology: A Review and Comparative Analysis , 2015, Front. Bioeng. Biotechnol..

[46]  Vince D. Calhoun,et al.  Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering , 2011, NeuroImage.

[47]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[48]  G. Pillonetto,et al.  An $\ell _{1}$-Laplace Robust Kalman Smoother , 2011, IEEE Transactions on Automatic Control.

[49]  Daniel D. Lee,et al.  Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons , 2000, Neuron.