Robust solid oxide cells for alternate power generation and carbon conversion

Solid oxide cells (SOCs) are potentially useful for versatile energy conversion and storage applications. This work demonstrates the feasibility of SOCs that are operated in alternate power generation and carbon conversion modes. SOCs with lanthanum strontium vanadate (LSV) hydrogen electrodes have been proved to be competent candidates for such applications. SOCs with LSV-based hydrogen electrodes exhibit salient catalytic activity in hydrogen and various simulated feedstocks, e.g. syngas, biogas, town gas, and coal gas. LSV electrodes seem to perform better in the electrolyser mode than in the fuel cell mode. LSV electrodes are unlikely to be coked by the deposited carbon when exposed to carbon-forming gases. Most interestingly, LSV undergoes continuous activation during the course of operation, instead of being poisoned, when exposed to gases containing 50 ppm H2S. LSV-based reversible SOCs under alternating electrolyser and fuel cell operations have been demonstrated with negligible performance degradation over 500 h.

[1]  Xiaoming Ge,et al.  Lanthanum Strontium Vanadate as Potential Anodes for Solid Oxide Fuel Cells , 2009 .

[2]  T. Nejat Veziroglu,et al.  “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies , 2008 .

[3]  M. Sayer,et al.  The metal-insulator transition in lanthanum strontium vanadate , 1975 .

[4]  J. Murday,et al.  Quantitative determination of surface composition of sulfur bearing anion mixtures by Auger electron spectroscopy , 1980 .

[5]  J. Winnick,et al.  Anode Materials for a Hydrogen Sulfide Solid Oxide Fuel Cell , 1999 .

[6]  M. S. Hegde,et al.  Study of transition-metal monosulphides by photoelectron spectroscopy , 1979 .

[7]  Nigel P. Brandon,et al.  The effect of fuel composition and temperature on the interaction of H2S with nickel-ceria anodes for Solid Oxide Fuel Cells , 2008 .

[8]  K. Wynne,et al.  X-ray photoelectron spectroscopic investigation of Group VIA elements , 1971 .

[9]  Jun Li,et al.  Decarbonising power generation in China--Is the answer blowing in the wind? , 2010 .

[10]  J. Irvine,et al.  La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam , 2008 .

[11]  Meilin Liu,et al.  Surface Modification of Ni-YSZ Using Niobium Oxide for Sulfur-Tolerant Anodes in Solid Oxide Fuel Cells , 2008 .

[12]  J. Zhu,et al.  Amorphous Ceramic Material as Sulfur-Tolerant Anode for SOFC , 2008 .

[13]  A. Petric,et al.  Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures , 2001 .

[14]  N. Danilovic,et al.  Ce0.9Sr0.1VOx (x = 3, 4) as anode materials for H2S-containing CH4 fueled solid oxide fuel cells , 2009 .

[15]  J. Baker New technology and possible advances in energy storage , 2008 .

[16]  R. H. Williams,et al.  Valence band structures and core-electron energy levels in the monochalcogenides of gallium. Photoelectron spectroscopic study , 1972 .

[17]  Kondo‐François Aguey‐Zinsou,et al.  Hydrogen in magnesium: new perspectives toward functional stores , 2010 .

[18]  J. Irvine,et al.  Novel redox reversible oxide, Sr-doped cerium orthovanadate to metavanadate , 2011 .

[19]  Zhe Cheng,et al.  New insights into sulfur poisoning behavior of Ni-YSZ anode from long-term operation of anode-supported SOFCs , 2010 .

[20]  S. Chan,et al.  Three phase boundaries and electrochemically active zones of lanthanum strontium vanadate–yttria-stabilized zirconia anodes in solid oxide fuel cells , 2011 .

[21]  Mogens Bjerg Mogensen,et al.  Poisoning of Solid Oxide Electrolysis Cells by Impurities , 2010 .

[22]  R. Schlögl,et al.  An X-Ray and Ultraviolet Photoemission Study of Vanadium Sulfides in the Series VS1.0-VS1.60 , 1993 .

[23]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[24]  Meilin Liu,et al.  Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells , 2007 .

[25]  Jonghee Han,et al.  Ceria Coatings Effect on H2S Poisoning of Ni/YSZ Anodes for Solid Oxide Fuel Cells , 2010 .

[26]  Zhe Cheng,et al.  A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels , 2004 .

[27]  U. Ozkan,et al.  Effect of H2O on sulfur poisoning and catalytic activity of Ni–YSZ catalysts , 2011 .

[28]  K. P. Jong,et al.  Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers , 2002 .

[29]  Meilin Liu,et al.  A Sulfur-Tolerant Anode Material for SOFCs , 2005 .

[30]  S. Jiang,et al.  A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells , 2006 .

[31]  S. Ebbesen,et al.  Exceptional Durability of Solid Oxide Cells , 2010 .

[32]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[33]  S. Ebbesen,et al.  Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells , 2009 .

[34]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[35]  S. Jensen,et al.  Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode , 2008 .

[36]  C. Serre,et al.  Why hybrid porous solids capture greenhouse gases? , 2011, Chemical Society reviews.

[37]  R. Vasquez,et al.  X-ray photoelectron spectroscopy study of Sr and Ba compounds , 1991 .

[38]  L. D. Jonghe,et al.  Ceria Nanocoating for Sulfur Tolerant Ni-Based Anodes of Solid Oxide Fuel Cells , 2007 .

[39]  Y. Matsuzaki,et al.  The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I , 2000 .

[40]  J. A. Taylor,et al.  Contributions to screening in the solid state by electron systems of remote atoms: Effects to photoelectron and Auger transitions , 1982 .

[41]  M. Sayer,et al.  High-temperature transport in lanthanum strontium vanadate , 1976 .

[42]  Qingxi Fu,et al.  Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment , 2010 .

[43]  Jingli Luo,et al.  Use of Metal Sulfides as Anode Catalysts in H 2 S -Air SOFCs , 2003 .

[44]  N. Minh Ceramic Fuel Cells , 1993 .

[45]  Jingli Luo,et al.  LaCrO3−VOx−YSZ Anode Catalyst for Solid Oxide Fuel Cell Using Impure Hydrogen , 2007 .

[46]  A. Aguadero,et al.  Study of the Crystal Structure, Thermal Stability and Conductivity of Sr(V0.5Mo0.5)O3+δ as SOFC Material , 2011 .

[47]  S. Chan,et al.  Double layer structure in solid oxide fuel cell anode/electrolyte interfaces: A Monte Carlo study , 2011 .

[48]  K. Abraham,et al.  The Lithium Surface Film in the Li / SO 2 Cell , 1986 .

[49]  R. Mukundan,et al.  Sulfur Tolerant Anodes for SOFCs , 2004 .

[50]  S. Chan,et al.  Double layer capacitance of anode/solid-electrolyte interfaces. , 2011, Physical chemistry chemical physics : PCCP.

[51]  Chenghao Yang,et al.  Perovskite Sr2Fe1.5Mo0.5O6−δ as electrode materials for symmetrical solid oxide electrolysis cells , 2010 .

[52]  Torgeson,et al.  Structural, electronic, and magnetic properties of LaxSr1-xVO3 (0.1 <= x <= 1.0). , 1992, Physical review. B, Condensed matter.

[53]  David J. Bayless,et al.  Comparison of LSV/YSZ and LSV/GDC SOFC Anode Performance in Coal Syngas Containing H2S , 2010 .

[54]  Nirupama U. Pujare,et al.  A Direct H 2 S / Air Solid Oxide Fuel Cell , 1987 .

[55]  Xiang-Rong Yu,et al.  Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source , 1990 .

[56]  Meilin Liu,et al.  Chemical, electrical, and thermal properties of strontium doped lanthanum vanadate , 2005 .

[57]  H. Franzen,et al.  XPS spectra of some transition metal and alkaline earth monochalcogenides , 1976 .

[58]  Zhe Cheng,et al.  Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions , 2005 .

[59]  Wuzong Zhou,et al.  Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation , 2006, Nature.

[60]  Jingli Luo,et al.  Sulfur-Tolerant Anode Catalyst for Solid Oxide Fuel Cells Operating on H2S-Containing Syngas† , 2010 .

[61]  Zhe Cheng,et al.  A Solid Oxide Fuel Cell Running on H2S ∕ CH4 Fuel Mixtures , 2006 .

[62]  Bart W. Terwel,et al.  Going beyond the properties of CO2 capture and storage (CCS) technology: How trust in stakeholders affects public acceptance of CCS , 2011 .

[63]  Scott A. Barnett,et al.  High efficiency electrical energy storage using a methane–oxygen solid oxide cell , 2011 .

[64]  M. Engelhard,et al.  Mitigation of sulfur poisoning of Ni/Zirconia SOFC anodes by antimony and tin , 2011 .

[65]  Siwen Li,et al.  Sulfur-Tolerant Materials for the Hydrogen Sulfide SOFC , 2004 .

[66]  R. Siriwardane,et al.  Interactions of SO2 with sodium deposited on CaO , 1985 .

[67]  Chenghao Yang,et al.  La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells , 2011 .

[68]  Rosaria Ciriminna,et al.  Solar hydrogen: fuel of the near future , 2010 .

[69]  Wen-Da Cheng,et al.  Vanadium-Based Mixed-Oxide Catalysts for Selective Oxidation of Hydrogen Sulfide to Sulfur , 1996 .

[70]  J. H. Craig,et al.  AES and XPS spectra of sulfur in sulfur compounds , 1981 .

[71]  R. Streicher,et al.  Hydrogen production by high temperature electrolysis of water vapour , 1980 .