Evaluation of calibration transfer strategies between Metal Oxide gas sensor arrays

Abstract Inherent variability of chemical sensors makes necessary individual calibration of chemical detection systems. This shortcoming has traditionally limited usability of systems based on Metal Oxide (MOX) sensor arrays and prevented mass-production for some applications. Here, aiming at exploring transfer calibration between electronic nose systems, we exposed five identical 8-sensor detection units to controlled gas conditions. Our results show that a calibration model provides more accurate predictions when the tested board is included in the calibration dataset. However, we show that previously built calibration models can be extended to other units using a reduced number of measurements. While baseline correction seems imperative for successful baseline correction, among the different tested strategies, piecewise direct standardization provides more accurate predictions.