Low-temperature characterization of a 1.55-μm multiple-quantum-well laser down to 10 K
暂无分享,去创建一个
Gennady A. Smolyakov | Marek Osiński | Emmanuel Mercado | Dipendra Adhikari | M. Osiński | Dipendra Adhikari | G. Smolyakov | E. Mercado
[1] Herbert Kroemer,et al. A proposed class of hetero-junction injection lasers , 1963 .
[2] John F. Muth,et al. Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light‐emitting diodes , 1996 .
[3] Masahiro Asada,et al. The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .
[4] Peter A. Andrekson,et al. Novel technique for determining internal loss of individual semiconductor lasers , 1992 .
[5] Chin C. Lee,et al. An effective diffusion barrier metallization process on copper , 2000 .
[6] L. Coldren,et al. Diode Lasers and Photonic Integrated Circuits , 1995 .
[7] A. Haug. Theory of the temperature dependence of the threshold current of an InGaAsP laser , 1985 .
[8] L. Esaki. New Phenomenon in Narrow Germanium p-n Junctions , 1958 .
[9] V. Semenov,et al. RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.
[10] M. Thirumaleshwar,et al. Gifford-McMahon cycle-a theoretical analysis , 1986 .
[11] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors , 1967 .
[12] R. A. Logan,et al. Excess Tunnel Current in Silicon Esaki Junctions , 1961 .
[13] Y. Uematsu,et al. Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers , 1985, IEEE Journal of Quantum Electronics.
[14] Z. Alferov. AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold , 1969 .
[15] T. Higashi,et al. Experimental analysis of characteristic temperature in quantum-well semiconductor lasers , 1996, Conference Digest. 15th IEEE International Semiconductor Laser Conference.
[16] K. K. Likharev,et al. Rapid Single-Flux-Quantum Logic , 1993 .
[17] B. W. Hakki,et al. cw degradation at 300°K of GaAs double‐heterostructure junction lasers. I. Emission spectra , 1973 .
[18] Cavity length dependence of differential quantum efficiency of GaInAsP/InP lasers , 1981 .
[19] I. Hayashi,et al. A low-threshold room-temperature injection laser , 1969 .
[20] D. Shoenberg. Low Temperature Physics , 1948, Nature.
[21] M. Osiński,et al. Tunneling current and electroluminescence in InGaN: Zn,Si/AlGaN/GaN blue light emitting diodes , 1997 .
[22] M. V. R. K. Murty,et al. Theory and Principles of Monochromators, Spectrometers and Spectrographs , 1974 .
[23] T. Paoli,et al. Derivative measurements of the current-voltage characteristics of double-heterostructure injection lasers , 1976 .
[24] F Durst,et al. Focusing of diode laser beams: a simple mathematical model. , 1990, Applied optics.
[25] K. Tanaka,et al. Dependence of differential quantum efficiency on the confinement structure in InGaAs/InGaAsP strained-layer multiple quantum-well lasers , 1993, IEEE Photonics Technology Letters.
[26] Y. Ebisuzaki,et al. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry. , 1985 .
[27] K. Likharev,et al. Rapid single flux quantum T-flip flop operating up to 770 GHz , 1999, IEEE Transactions on Applied Superconductivity.
[28] X. Zeng,et al. Far-field distribution of double-heterostructure diode laser beams. , 1993, Applied optics.