Low-temperature characterization of a 1.55-μm multiple-quantum-well laser down to 10 K

A ridge-waveguide 1.55-μm semiconductor laser with a multiple-quantum-well carrier confinement structure was characterized from room temperature down to 10 K. The temperature dependence of important laser parameters, such as threshold current, series resistance, differential efficiency, and emission wavelength, extracted from standard L-I/I-V measurements, is reported. The applicability of the standard ideal-diode model of semiconductor laser at cryogenic temperatures is analyzed.

[1]  Herbert Kroemer,et al.  A proposed class of hetero-junction injection lasers , 1963 .

[2]  John F. Muth,et al.  Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light‐emitting diodes , 1996 .

[3]  Masahiro Asada,et al.  The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .

[4]  Peter A. Andrekson,et al.  Novel technique for determining internal loss of individual semiconductor lasers , 1992 .

[5]  Chin C. Lee,et al.  An effective diffusion barrier metallization process on copper , 2000 .

[6]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[7]  A. Haug Theory of the temperature dependence of the threshold current of an InGaAsP laser , 1985 .

[8]  L. Esaki New Phenomenon in Narrow Germanium p-n Junctions , 1958 .

[9]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[10]  M. Thirumaleshwar,et al.  Gifford-McMahon cycle-a theoretical analysis , 1986 .

[11]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[12]  R. A. Logan,et al.  Excess Tunnel Current in Silicon Esaki Junctions , 1961 .

[13]  Y. Uematsu,et al.  Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers , 1985, IEEE Journal of Quantum Electronics.

[14]  Z. Alferov AlAs-GaAs heterojunction injection lasers with a low room-temperature threshold , 1969 .

[15]  T. Higashi,et al.  Experimental analysis of characteristic temperature in quantum-well semiconductor lasers , 1996, Conference Digest. 15th IEEE International Semiconductor Laser Conference.

[16]  K. K. Likharev,et al.  Rapid Single-Flux-Quantum Logic , 1993 .

[17]  B. W. Hakki,et al.  cw degradation at 300°K of GaAs double‐heterostructure junction lasers. I. Emission spectra , 1973 .

[18]  Cavity length dependence of differential quantum efficiency of GaInAsP/InP lasers , 1981 .

[19]  I. Hayashi,et al.  A low-threshold room-temperature injection laser , 1969 .

[20]  D. Shoenberg Low Temperature Physics , 1948, Nature.

[21]  M. Osiński,et al.  Tunneling current and electroluminescence in InGaN: Zn,Si/AlGaN/GaN blue light emitting diodes , 1997 .

[22]  M. V. R. K. Murty,et al.  Theory and Principles of Monochromators, Spectrometers and Spectrographs , 1974 .

[23]  T. Paoli,et al.  Derivative measurements of the current-voltage characteristics of double-heterostructure injection lasers , 1976 .

[24]  F Durst,et al.  Focusing of diode laser beams: a simple mathematical model. , 1990, Applied optics.

[25]  K. Tanaka,et al.  Dependence of differential quantum efficiency on the confinement structure in InGaAs/InGaAsP strained-layer multiple quantum-well lasers , 1993, IEEE Photonics Technology Letters.

[26]  Y. Ebisuzaki,et al.  Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry. , 1985 .

[27]  K. Likharev,et al.  Rapid single flux quantum T-flip flop operating up to 770 GHz , 1999, IEEE Transactions on Applied Superconductivity.

[28]  X. Zeng,et al.  Far-field distribution of double-heterostructure diode laser beams. , 1993, Applied optics.