Implementing 2-descent for Jacobians of hyperelliptic curves
暂无分享,去创建一个
[1] James S. Milne,et al. Arithmetic Duality Theorems , 1987 .
[2] J. Cassels,et al. Arithmetic on Curves of Genus 1. IV. Proof of the Hauptvermutung. , 1962 .
[3] J. Neukirch. Algebraic Number Theory , 1999 .
[4] S. Lichtenbaum. Duality theorems for curves overP-adic fields , 1969 .
[5] Siegfried Bosch,et al. Rational points of the group of components¶of a Néron model , 1998, math/9804069.
[6] Computing the Mordell-Weil rank of Jacobians of curves of genus two , 1993 .
[7] J. Serre. Une ≪formule de masse≫ pour les extensions totalement ramifiées de degré donné d’un corps local , 2003 .
[8] A. Mattuck. Abelian Varieties over P-Adic Ground Fields , 1955 .
[9] E. V. Flynn,et al. Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2: Weddle's surface , 1996 .
[10] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[11] Bjorn Poonen,et al. Explicit descent for Jacobians of cyclic coevers of the projective line. , 1997 .
[12] Bjorn Poonen,et al. The Cassels-Tate pairing on polarized abelian varieties , 1999 .
[13] J. Cremona. Algorithms for Modular Elliptic Curves , 1992 .
[14] Edward F. Schaefer. 2-Descent on the Jacobians of Hyperelliptic Curves , 1995 .
[15] Edward F. Schaefer. Computing a Selmer group of a Jacobian using functions on the curve , 1998 .
[16] Bjorn Poonen,et al. Cycles of quadratic polynomials and rational points on a genus-$2$ curve , 1995 .
[17] The Mordell-Weil Group of Curves of Genus 2 , 1983 .